
Software Prototyping and
Requirements Engineering

June 1992

Prepared for:
Rome Laboratory

RL/C3CB
525 Brooks Road

Griffiss AFB, NY 13441-4505

Prepared by:
Joseph E. Urban

Arizona State University
College of Engineering and Applied Sciences

Department of Computer Science and Engineering
Tempe, AZ 85287-5406

Distributed by:
ITT Systems & Sciences Corporation

P.O. Box 120
Rome, NY 13503-0120

Data & Analysis Center for Software
P.O. Box 120
Rome, NY 13503-0120

DACS

The Data & Analysis Center for Software (DACS) is a Department of Defense (DoD) Information Analysis Center
(IAC), administratively managed by the Defense Technical Information Center (DTIC) under the DoD IAC Program.
The DACS is technically managed by Rome Laboratory (RL). Itt Systems & Sciences Corporation manages and
operates the DACS, serving as a source for current, readily available data and information concerning software
engineering and software technology.

 Executive Summary

The field of software engineering has yet to achieve the productivity and
quality gains that have been seen in the hardware counterpart field. Prototyping
in more traditional engineering disciplines is the common approach for
demonstrating feasibility of the functionality of a system early in the life cycle.
Prototyping is also useful for risk assessment and as a means for validation of end
user requirements. Software engineers began to formally recognize the benefits
of prototyping software systems in the early 1980's. A decade of experience and
research gives the opportunity for an assessment of the area.

Similarly, software requirements and specification techniques provide a
basis for establishing early in the software life cycle the functionality of a system.
The benefits of establishing a "standard" against which the end user needs are
validated can have a significant impact on minimizing problems. These problems
arise downstream in the life cycle when there is not a clear understanding of what
is needed. In addition, the "standard" serves as a means in which a design can be
validated. Executable requirements and specification techniques allow for the
dynamic demonstration of functionality of a software system. Requirements
engineering has a similar decade of experience and research. One area of
particular interest to the software engineering community is in coupling
prototyping and requirements engineering.

This report includes the motivation for using software prototyping in
general and specifically in the context of requirements engineering. An overview
of software prototyping covers life cycle models, approaches, pitfalls, and
opportunities. The section on software requirements and specification establishes
a basis for investigating techniques. The summary analyses of software
requirements and specification techniques and tools for prototyping address
twenty techniques across a variety of language models. Each technique summary
analysis was developed to include the history, technique overview, method,
supporting tools, language features, and strengths/weaknesses. The description of
needed detailed analyses includes a summary of common aspects among the
techniques to be developed in a repository. Software technology transfer is
addressed in this report from the standpoint of past problems, avenues of
opportunity, and actual experience in this area. The report ends with potential
areas of future research and a summary.

 TABLE OF CONTENTS

1. INTRODUCTION
 1.1 Problems With the Software Life Cycle
 1.2 Changing Software Requirements

1.2.1 Management Implications
1.2.2 Product Implications

1.3 Software Developer, End User, and Project Manager Needs
1.3.1 Rationale for Prototyping Requirements and Specifications
1.3.2 Translation of Needs Into Techniques and Tools

1.4 Process and Product Quality
1.4.1 SEI Assessment Methodology
1.4.2 Rome Laboratory Quality Assessment
1.4.3 6-Sigma Software

1.5 Report Overview
2. PROTOTYPING SOFTWARE SYSTEMS

2.1 Software Life Cycle Models
 2.1.1 Conventional Model and Related Variations

2.1.2 Rapid Prototyping
2.1.3 Evolutionary Prototyping

2.2 Software Prototyping Taxonomy
2.2.1 Natural Language Approaches
2.2.2 Software Requirements and Specifications
2.2.3 Software Design and High Level Languages
2.2.4 Knowledge Based Approach

2.3 Prototyping Pitfalls
2.3.1 Learning Curve
2.3.2 Tool Efficiency
2.3.3 Applicability

 2.3.4 Undefined Role Models for Personnel
2.4 Prototyping Opportunities

2.4.1 Existing Investment in Maintained Systems
2.4.2 Adding lnvestment in Fully Exploiting the Technology
2.4.3 Developer to End User Pass Off

3. SOFTWARE REQUIREMENTS AND SPECIFICATIONS
3.1 Drawing Requirements, Specifications, and Design Fencelines

3.1.1 Evolution of the Area
3.1.2 Policies and Procedures
3.1.3 Taxonomies

3.2 Representation Forms
3.2.1 Textual
3.2.2 Boxology
3.2.3 Graphical

 3.3 Tool Support
3.3.1 Construction
3.3.2 Analysis
3.3.3 Execution
3.3.4 Test Data Generation

 3.3.5 Documentation Generation
 3.3.6 Management
3.4 Evaluating Software Requirements and Specification Techniques

3.4.1 Qualitative Criteria
3.4.2 Quantitative Criteria
3.4.3 Static Aspects
3.4.4 Dynamic Aspects

4. REQUIREMENTS AND SPECIFICATION TECHNIQUES AND TOOLS
 FOR PROTOTYPING

4.1 Analysis Introduction
4.2 Technique 1 - 001
4.3 Technique 2 - Anna/TSL
4.4 Technique 3 - ANSI/IEEE Standard 830-1984
4.5 Technique 4 - ARTS
4.6 Technique S - DARTS
4.7 Technique 6 - Descartes
4.8 Technique 7 - ENVISAGER
4.9 Technique 8 - GSS
4.10 Technique 9 - Larch
4.11 Technique 10- PAISLey
4.12 Technique 11 - PLEASE
4.13 Technique 12 - PROSPER
4.14 Technique 13 - PROTOB
4.15 Technique 14- PSDL/CAPS
4.16 Technique 15 - SBRE
4.17 Technique 16- SLAN-4
4.18 Technique 17 - SPADES
4.19 Technique 18 - SREM
4.20 Technique 19 - STATEMATE
4.21 Technique 20 - SUSL
4 22 Further Technique and Tool Analyses

4.22.1 Software Requirements and Specification Repository
4.22.2 Detailed Analyses
4.22.3 Applications Development

5. SOFTWARE ENGINEERING TECHNOLOGY TRANSFER
5.1 Overview of the Problem

5.1.1 Technology Transfer Time
5.1.2 Behavioral Process
5.1.3 Middle Level Management
5.1.4 Quick-Fix Approach

5.2 Approaches to Technology Transfer
 5.2.1 Market Driven

5.2.2 Government/Corporate Sales
5.2.3 Edict/Fiat Directed
5.2.4 Guerrilla Warfare
5.2.5 Software Engineering Education

5 3 Reverse Engineering
5.3.1 Maintainers Hampering Developers and Vice Versa
5.3.2 Feedback and Feedforward
5.3.3 Advanced Library Systems

5.4 Case Studies

6. RECOMMENDATIONS AND SUMMARY
6.1 Future Research

6.1.1 Technique Unification
6.1.2 Computer-Supported Cooperative Work
6.1.3 Multimedia and Scientific Visualization
6.1.4 Domain Analysis

6.2 Report Summary

7. REFERENCES
Appendix A: BIBLIOGRAPHIC CITATIONS
Appendix B: LIST OF ACRONYMS

1. INTRODUCTION

This report is intended for software managers and software engineers
responsible for the development of large-scale software systems. These managers
and engineers have a need for information on software prototyping and
requirements engineering. In order to satisfy the need for knowledge on this
advanced technology, this report begins with background information regarding
the importance of these topics to software development, maintenance, and
management. The critical issue throughout this report is the concern for software
techniques (methods) and tools (automated support) that assist in understanding
"what" the software is supposed to do rather than "how" the software is
implemented.

As motivation for the emergence of the report topic, in June 1990, the
First International Workshop on Rapid System Prototyping was held in Research
Triangle Park. North Carolina. The subtitle of the workshop, "Shortening the
Path from Specification to Prototype." represents a major advantage that can be
gained from using this technology in the development and maintenance of
complex, large-scale software systems. Another major advantage not explicitly
mentioned in the subtitle is the potential reliability gains that can come from a
prototyping approach to software development. There are many approaches to
software prototyping, as will be reviewed in this report. Software requirements
engineering techniques and tools represent one such approach to prototyping of
software systems. The technology associated with software requirements
engineering can potentially provide, if used effectively, the most significant
impact on improving the software development process, as well as software
quality.

In addition to the Rapid System Prototyping Workshop, the IEEE
International Symposium on Requirements Engineering will be held January 4-6,
1993 at Coronado Island, San Diego, California. These two technical meetings
represent the maturation of the first generation of this technology and the
emergence of the next generation of techniques and tools. In order to review the
front-end of the software life cycle, this report addresses initially, some of the
critical issues related to software development and management. This initial
discussion will provide the foundation for a more detailed treatment of the area.

1.1 Problems With the Software Life Cycle

The conventional waterfall software life cycle model (or software process)
is used to characterize the phased approach for software development and
maintenance. Software life cycle phase names differ from organization to
organization. For this report, the software process includes the following phases:
requirements formulation and analysis, specification. design, coding, testing, and
maintenance.

Alternative software life cycle models have been proposed as a means to
address the problems that are associated with the waterfall model. One alternative

software life cycle model uses prototyping as a means for providing early
feedback to the end user and developer. Definitions of prototyping vary among
organizations [Carey90]. Section 2 will establish a framework for discussion.

The waterfall model allows for a changing set of means for representing an
evolving software system. These documents then provide a basis for introducing
errors during the software life cycle. The user often begins to receive
information concerning the actual execution of the system after the system is
developed. During the development of large-scale software systems, the end
user, developer, and manager can become frustrated with ambiguous, missing, or
changing software requirements.

1.2 Changing Software Requirements

Software techniques and tools exist for identifying ambiguous and missing
software requirements. These problems are important factors in the development
of any software system. However, the problems are further complicated with
changing software requirements. The development length of large-scale software
systems is such that changing requirements are a significant problem that leads to
increased development costs. Software requirements formulation and analysis is
even more difficult in complex application domains. Bera [Bera90] describes the
problems with requirements engineering in the context of future fighter aircraft.

1.2.1 Management Implications

The problems that changing requirements introduce into the software life
cycle are reflected in schedule slip pages and cost overruns. One argument is that
more time spent upstream in the software life cycle results in less turmoil
downstream in the life cycle. The more time argument is typically false when the
software requirements and specification technique is a natural language. A
discussion of the management implications of deriving requirements was
provided in [Yeh82] and then new directions provided in [Yeh84].

1.2.2 Product Implications

The product implications are quality based aspects of the system during
software development and maintenance. The requirements problems listed above
have a ripple effect throughout the development of a software system. Even with
this advanced technology, changing requirements are to be expected, but there
would be the environment for control and discipline with the changes.

1.3 Software Developer, End User, and Project Manager Needs

Software engineers need the capability to provide early software life cycle
feedback to the end user. In addition, this early feedback serves as a "standard"
of the software functionality for the entire development team and management to
review.

1.3.1 Rationale for Prototyping Requirements and Specifications

Software engineers need the capability to represent software requirements
and specifications in a formal notation that will support analysis and execution.
The notation must be amenable to transformation downstream in the software life
cycle.

1.3.2 Translation of Needs Into Techniques and Tools

Given a notation with enough rigor, software engineers benefit from
automated support for prototyping support to include construction, analysis for
inconsistencies and incompleteness, execution for dynamic analysis, and
management of complexity.

1.4 Process and Product Quality

Catchpole provided strong motivation for the development of a successful
methodology or process [Catchpole86]. There has been a recent focus in the
software engineering community on process and product quality. The SEI
assessment methodology, Rome Laboratory quality assessment, and 6-Sigma
software reliability goals are three examples that work in conjunction with
prototyping requirements and specifications.

1.4.1 SEI Assessment Methodology

The Software Engineering Institute assessment methodology addresses the
process aspect of software development and maintenance. Use of the technology
for prototyping and requirements engineering sharpens the focus on the process.
A change in the user needs can be reflected as a similar change in the formal
notation used to represent the requirements and specifications.

1.4.2 Rome Laboratory Quality Assessment

This report does not address the efforts on non-functional specifications,
e.g., the Rome Laboratory effort on software quality specifications. However,
the natural language functional requirements of the Assistant for Software
Quality developed by Rome Laboratory could be used in conjunction with a
formal specification language.

1.4.3 6-Sigma Software

Reliability requirements are becoming more important and must be
addressed early in the software life cycle; not deferred to a later stage of the life
cycle for attention and correction. Reliability models should be coupled with the
technology of prototyping and requirements engineering for assessment early on
and throughout development and maintenance.

1.5 Report Overview

Section 2 is devoted to an overview on prototyping software systems. The
section addresses all possible forms of software prototyping as a means for
communicating with end users, developers, and managers.

Software requirements engineering techniques and tools represent one
potential form of software prototyping and are described in Section 3. This
approach is one that has the potential for providing the most benefits during the
software life cycle. These benefits include early identification of problems in
understanding user needs, developer understanding of the software system under
development, and a standard against which management can track performance.

A summary analysis of twenty software requirements and specification
techniques and tools is presented in Section 4. This summary analysis is intended
to also serve as a survey of a broad cross-section of the technology. A template
was used to describe each technique in an overview form. The section concludes
with a summary section and comparisons of the techniques and tools. Problems
in software technology transfer have impeded progress in the area of software
requirements engineering. These problems are addressed in Section 5. The
report concludes in Section 6 with the state-of-the-practice in industry and
recommendations for future research.

 2. PROTOTYPING SOFTWARE SYSTEMS

Ince and Hekmatpour provide excellent motivation for prototyping and
raise some additional research questions [Ince87]. The field of prototyping
software systems has many approaches. Rather than pass judgement on any one
approach, this section overviews the approaches in an effort to set the stage for
the remainder of the report which singles out the requirements engineering
approach.

2.1 Software Life Cycle Models

Prototyping has been introduced throughout the conventional, waterfall
software life cycle model. Two forms of life cycle models, rapid prototyping
and evolutionary prototyping, have emerged around prototyping technology.

2.1.1 Conventional Model and Related Variations

The conventional life cycle model can allow for prototyping within any of
the phases. Unfortunately, this approach can be difficult to control when, for
example, coding of a user interface takes place during requirements formulation
and analysis. Hoffman provided a methodology to aid in this area [Hoffman88].

2.1.2 Rapid Prototyping

The rapid prototyping model strives for demonstrating functionality early
on the development of a system. This approach has been proposed for use in
conjunction with risk management [Clapp87] under a study sponsored by the US

Air Force Electronic Systems Division. Examples of rapid prototyping were
reported [Luqi88b, Luqi88c, Lea90] with notations that supported the rapid
deployment of functionality.

2.1.3 Evolutionary Prototyping

In evolutionary prototyping the focus is on achieving functionality for
demonstrating a portion of the system to the end user for feedback and system
growth. The prototype emerges as the actual system downstream in the life
cycle. As with each iteration in development, functionality is added and then
translated to an efficient implementation. Also of interest is functional
programming [Henderson86] and relational programming [Ceri88] as a means for
accomplishing evolutionary prototyping. Methods have been described for
controlling prototyping from development through maintenance which are
beneficial for incorporating this new technology [Lui89a. Mayhew89].

2.2 Software Prototyping Taxonomy

A range of possibilities exists for prototyping software systems. Any form
of prototyping is perceived better than not prototyping at all. Several taxonomies
have been proposed and served as the basis for this discussion. The early,
middle, and late prototyping taxonomy [Ratcliff88] was based on the software life
cycle. Another software life cycle based prototyping taxonomy [Hooper89]
included execution support as a criterion.

One form of prototyping occurs with the natural language approaches.
The manual approach uses a variety of non-standard representation mechanisms
and lacks, of course, automated support. Another approach is based on software
requirements and specification techniques, which will be the focus of a major
portion of this report. Later in the software life cycle, but still of benefit, would
be prototyping based on software design techniques and high level languages.
Recently, advances in knowledge based approaches to software development have
emerged as a means for capturing domain analysis.

In addition to the four major approaches to prototyping, a hybrid approach
looks at bridging several techniques, e.g., 'me too' [Alexander89].

2.2.1 Natural Language Approaches

Natural language serves as the primary manual approach. The ANSI/IEEE
Std 830-1984 [ANSI84] provides some structure to essentially a natural language
approach. The Arts [Dorfman84] approach includes software support for
hierarchically structured natural language requirements. Experience with
capturing requirements for six systems (five of which were process control
systems) [Zucconi89] was reported from a software process standpoint with
primarily a natural language approach.

2.2.2 Software Requirements and Specifications

The software requirements and specifications approach to prototyping is
the basis for Sections 3 and 4. Davis provided one of the early arguments for
rapid prototyping with executable software requirements and specifications
[DavisA82]. Example techniques that aim at the front-end of the software life
cycle though execution of functionality are 001 [Harnilton90] and Descartes
[Urban90].

2.2.3 Software Design and High Level Languages

Design and coding languages have been used for prototyping. The utility
of showing the end user the notation with these techniques is not a viable
possibility. Example specification languages that were influenced by high level
languages are Anna/TSL [Helmbold88. Luckham85. Luckham87], Gypsy
[Ambler77], Larch [Guttag85] and SUSL [Belkhouche86]. Also, languages out of
the mainstream general purpose programming languages have been used for
prototyping, e.g., the declarative language. Lucid [Skillicorn89] and the logic
programming language. Prolog [Brvant89]. Recently, HCLIE [Tsai91] was
developed as a superset of Prolog for use as a requirements language. Similarly,
RSF uses transition rules that map into logic programming [Degl'Innocenti90].

2.2.4 Knowledge Based Approach

The knowledge based approach has been used successfully during
requirements elicitation. Luqi provides a discussion of the benefits to rapid
prototyping with this approach [Luqi88d]. The key to this approach is in
building sufficient application domain knowledge. An example of this approach
can be found in Express [Topping87], which was developed for embedded system
applications. An example of a knowledge-based approach for dataintensive
applications was developed by Chen and Chou [ChenP-M88]. A software
storming method combined with a knowledge-based approach was proposed in
[Jordan89]. Additional knowledge-based approaches addressed in this study were
[Tsai88, Tsai89, Loucopoulos89, Lee85, TsaiS-T90, Reubenstein91]. The
Knowledge-Based Requirements Assistant is discussed in Section 5 with regards
to domain analysis research.

2.3 Prototyping Pitfalls

Prototyping has not been as successful as anticipated in some organizations
for a variety of reasons [Tozer87]. Training, efficiency, applicability, and
behavior can each have a negative impact on using software prototyping
techniques.

2.3.1 Learning Curve

A common problem with adopting prototyping technology is high
expectations for productivity with insufficient effort behind the learning curve.

In addition to training for the use of a prototyping technique, there is an often
overlooked need for developing corporate and project specific underlying
structure to support the technology. When this underlying structure is omitted,
lower productivity can often result.

2.3.2 Tool Efficiency

Prototyping techniques outside the domain of conventional programming
languages can have execution inefficiencies with the associated tools. One
prominent prototyping technique was the basis for the ESPRIT funded SETL to
Ada project [Doberkat87] as an effort to provide efficient transformations. The
efficiency question was argued as a negative aspect of prototyping [Prizant86].

2.3.3 Applicability

Application domain has an impact on selecting a prototyping technique.
There would be limited benefit to using a technique not supporting real-time
features in a process control system. The control room user interface could be
described, but not integrated with sensor monitoring deadlines under this
approach. Goldsack and Finkelstein provide a discussion on various unique
aspects of real-time requirements [Goldsack91].

There are techniques that have been developed for specific application
domains. Several applications domains for which prototyping has been used
throughout the life cycle include: business [Misra88, Knoll89], computer-aided
design [Gupta89. Lor91], distributed [Cheng82, Budkowski87, Cieslak89,
Berzins90, Putilo91], flight control [Duke89], module interface [Archibald83,
Hoffman89], operating systems [Archer90, Mosse90, Zhou90], programming
languages [Herndon88. Michaelson88. Bryant89, Cordy91], software engineering
environments [Kuo87], and user interface [Easterby87, Lewis89]. This report is
more concerned with wide spectrum techniques. However, there is interest in the
techniques listed above, even though these techniques may have narrow
applicability.

2.3.4 Undefined Role Models for Personnel

This new approach of providing feedback early to the end user has resulted
in a problem related to the behavior of the end user and developers. An end user
with a previously unfortunate system development effort can be biased in future
interactions with development teams. Hemenway and McCusker provide
empirical experience with an actual prototype and users feedback [Hemenway82].
Alavi describes in [Alavi91] a university experiment on software prototyping.
Boehm also describes in [Boehrn84] a university experiment on software
prototyping. A change classification scheme was proposed in [Mayhew89] as a
means for control based software prototyping activities.

2.4 Prototyping Opportunities

Not to prototype at all should simply not be an option in software
development. The benefits of software prototyping are elaborated in
[Herndon88]. The end user can not throw the software needs (stated in natural
language) over the transom and expect the development team to return the
finished software system after some period of time with no problems in the
deliverables. Given that there must be interaction between the end user and
development team, even the manual approaches described in Section 2.2.1 are the
bare minimum that would be needed.

2.4.1 Existing Investment in Maintained Systems

One of the major problems with incorporating this technology is the large
investment that exists in software systems currently in maintenance. The idea of
completely reengineering an existing software system with current technology is
not feasible. There is, however, a threshold that exists where the expected life
span of a software system justifies that the system would be better maintained
after being reengineered in this technology. Total reengineering of a software
system should be a planned for effort rather than as a reaction to a crisis
situation. At a minimum, prototyping technology could be used on critical
portions of an existing software system. This minimal approach could be used as
a means to transition an organization to total reengineering.

2.4.2 Adding Investment in Fully Exploiting the Technology

In many cases, an organization will decide to incorporate this advanced
software prototyping technology, but the range of support for the concept varies
widely. Software prototyping, as a development technique, must be integrated
within an organization through training, case studies, and library development.
In situations where this full range of commitment to the technology is lacking,
e.g., only developer training provided, when problems begin to arise in using the
technology a normal reaction of management is to revert back to what has
worked in the past.

2.4.3 Developer to End User Pass Off

Finally, the end user involvement becomes enhanced when changes in
requirements can first be prototyped and agreed to before any development
proceeds. Similarly, during development of the actual system or even later out
into maintenance should the requirements change, the prototype is enhanced and
agreed to before the actual changes become confirmed. A schema was presented
for validating an embedded system description from initial description to running
target system [Goedicke86].

This section established prototyping as a means for improving software
development and maintenance. The next section is based on selection of one of
the major approaches to prototyping. An overview of software requirements and

specification technology is addressed in the next section. Also included is the
description of an evaluation method for front-end software life cycle techniques
and tools.

 3. SOFTWARE REQUIREMENTS AND SPECIFICATIONS

The previous sections have provided a background for the problems in
software engineering and software prototyping as a potential aid to these
problems. Four approaches to software prototyping were discussed and the
software requirements and specification approach has been singled out for
further exploration in this section. Rzepka and Ohno [Rzepka85] provide strong
motivation for the held of requirements engineering in a special issue of
Computer which they guest edited. The motivation for using formal methods
has been addressed in terms of successes in the European software engineering
community [Babcock89]. Thayer and Dorfman [Thayer90] have edited an
excellent tutorial of selected readings in the area. Included in the tutorial is a
survey and comparison of five techniques [DavisA90].

Current software requirements and specification techniques have been
designed with the goal of providing general facilities that permit usage across
different domains or application areas. This approach seems to be logical, and in
fact resembles the approach taken in traditional high level programming
languages. However, certain application areas, such as real-time systems, have
characteristics that are unique and are difficult to represent using traditional
approaches. However, given this technology base, industry practice has been
poor to non-existent. The role of the government can benefit this area by taking
a leadership position on the technology as described in Section 5.

Six analysis methods have emerged as front runners in terms of
commercially available techniques and tools. These methods and several sample
techniques are: process, data, control, object, natural language, knowledge base,
and assertional. The structured analysis approach has gained a large following,
e.g., [Ross77a, Ross77b, Krista89, Lea90. Lintulampi90]. The object oriented
method has been used extensively, e.g., Object-Oriented Requirements
Specification Method [Bailin89], Object-Oriented Analysis [Coad90], Object-
Oriented Specification [Jarvinen90], Object Oriented Transformation Schemas
[Coomber90], and Ada Object-Based Analysis [Walers91b]. The state machine
and Petri net approaches have been used primarily for real-time systems
specification [Wang88, Baldassari91, Jaffe91, Schmidt91]. RT-ASLAN
[Auernheimer86] and OSDN/SBOM [ChenJ89] are techniques that combine the
process and object methods. There are approximately fifty techniques available
on the market based on a recent Software magazine product review. NASA
empirical work led to development of the HOS methodology and USE.IT
software engineering environment which is now being extended as 001.
RAPID/USE [Wasserman86] and TAGS [Sievert85] are other examples.

Therefore, an appropriate approach is to provide the requirements

engineer with tools that embody a conceptual model of the area of application
described. The use of a conceptual model will be of benefit for both users and
developers, since it will increase the communication level between participants in
the software life cycle by providing concepts and mechanisms that resemble the
characteristics and behavior of real world objects.

3.1 Drawing Requirements, Specifications, and Design Fencelines

The intent of this report is not to draw strict fencelines separating
requirements, specification, and design. One uniform notation that could
transition from end user needs to production software would be ideal. The
reality is such that some techniques state only the "what" while others state the
"what" along with the "how". Software quality can be improved by the use of
software requirements and specification technology, which will improve the
developer's ability to satisfy customer needs and create a reliable system. Early
work in this area did cross fencelines, e.g. SSAGS [Payton82] and Event-Driven
Methodology [Rolland83].

The primary goal of advances on the upstream effort is to reduce the
cognitive gap that exists between current requirements engineering techniques
and the users (whether end user, software engineer, or project manager) of such
techniques. The primary goal of advances in the downstream effort is to smooth
the transition to efficient, production quality software systems.

3.1.1 Evolution of the Area

The field of software requirements and specifications was primarily
initiated as a research area during the 1970's. One major research funding
program [DavisC77] in this area was reported in a special collection on
requirements analysis that appeared in the IEEE Transactions on Software
Engineering.

CASE products for software requirements and specification began to
emerge in the 1980's. These early CASE products achieved limited success due
to some of the problems identified elsewhere throughout this report. The
technology has matured and become a viable CASE market. However, more
research is needed to build on the current technology and provide greater
capabilities in the next generation of languages.

3.1.2 Policies and Procedures

One problem with this technology is the lack of a strong set of policies and
procedures endorsing the use of the technology. The ANSI/IEEE Std 830-1984
is one of the most significant efforts in the area of policies. However, 830-1984
falls somewhat short, only serving as a guide. Further work is ongoing to revise
830-1984 into a complete standard.

3.1.3 Taxonomies

Several taxonomies have been proposed for classifying software
requirements and specification techniques. Roman provided a taxonomy based on
the underlying model supporting a technique [Roman85]. Davis and Freeman
provided a multi-faceted taxonomy that includes the underlying model
[DavisA91]. This report extends this earlier work on classifying techniques with
a template-based overview for each technique and identification of summary
detailed analysis.

3.2 Representation Forms

In terms of representation forms software requirements and specification
techniques appear in three major forms: textual, boxology, and graphical. In the
textual form, formal grammars are used to define the syntax of the language.
The boxology form has definitions for various symbols in the language. Finally,
in the graphical form the actual objects of a system are used in the technique. All
three forms have advantages and disadvantages. In some cases, multiple
representation forms are used with one underlying representation form for
storage and retrieval. For example, a technique could allow for textual or
graphical representation, but store the requirements and specifications in textual
form.

3.2.1 Textual

The textual approach uses characters based on a formally defined language
to describe the requirements and specifications. This approach is an outgrowth
of conventional programming languages.

3.2.2 Boxology

 Two approaches have been used for the graphical form of representation.
One form, referred to here as a boxology, is to define geometric symbols that
have syntactic and semantic context. This approach has significance to the
software engineers trained in the technology and lesser impact with the end user
when viewed statically. Graphical support for the specification of complex
systems has been provided in the past by several specification techniques.
However, the graphics support provided by existing specification techniques is
generally restricted to those boxologies that do not convey any implicit meaning
for the application described. Animation of a boxology has been explored as a
means to support specification understanding [Stasko90].

3.2.3 Graphical

A more recent graphical form has been driven by object oriented
techniques. This form involves representing the actual objects within a system.
Two graphical forms have emerged, one statically represents the objects within a
system and the other form animates the objects to demonstrate the functionality.
New approaches, based on the availability of improved graphics capabilities and

object-oriented programming techniques, should be incorporated in the support
software for a new generation of specification techniques.

3.3 Tool Support

Early software requirements and specification techniques that appeared in
the open literature did not include tool support. However, with the advent of
executable specifications the tool support increased. The tool support provided
for software requirements and specification techniques covers the range of a
single tool to an integrated software environment. In addition, tool to tool
communication with tools in other phases of the software life cycle is also an
important part of the total environment. Slusky provides a classification scheme
for CASE tools that support prototyping [Slusky87]. The remainder of this
section is an overview of software requirements and specification tool support
for: construction, analysis, execution, test data generation, documentation
generation, and management.

3.3.1 Construction

The construction of requirements and specifications in a minimal setting
would be through the use of a general-purpose text editor. Context-sensitive or
language-sensitive editors are another means for specification construction which
aid in removing syntactic errors. With the recent advancement and cost
reduction of bit mapped displays, editors have become more readily available for
the graphic representation forms.

3.3.2 Analysis

Analysis of software requirements and specifications typically involves
syntactic, internal consistency, and logical completeness checking. Empirical
studies [Hamilton90] have reported that over 75% of the errors introduced
during software development can be attributed to consistency and completeness
errors. Tool support through analysis of requirements and specifications can
have a significant impact when compared to the implications of removing errors
later in the software life cycle.

3.3.3 Execution

Not all techniques support execution of requirements and specifications.
Some early techniques, which were manual, now have execution support e.g.,
Structured Analysis [Lea90] and Jackson System Development [Kato87]. Those
techniques that have execution support, typically, use one of three forms:
simulation, interpretation, or transformation. None of these approaches to
execution has proven to be as efficient as hand development of code. However,
the advantages gained through early life cycle feedback with the end user and
developers is more significant than the execution efficiency when put in the
context of large-scale systems. Also, as advances in compiler and interpreter
technology occur, similar advances are expected to occur in the execution of

requirements and specifications.

The execution capability has an even more significant impact when the
language and tool support execution of partial specifications. A long term goal
would be for execution of requirements and specifications to be as efficient as
hand developed code, thus eliminating the need for the traditional design and
coding phases of the software life cycle.

3.3.4 Test Data Generation

Analysis tools for requirements and specification provide static syntactic
analysis. Executable specifications provide a means to demonstrate dynamically
the functionality of the specifications based on input data provided by the user.
However, executable specifications provide the opportunity for the development
of techniques for white box testing of the specifications based on automatic test
data generation of the expected input data. The benefits of this capability have
been described in the context of prototyping [Staknis90].

3.3.5 Documentation Generation

Some techniques provide the capability to automatically generate
documentation from the requirements and specifications. This documentation can
be in the form of user manuals, internal project documentation, and management
oversight reports.

3.3.6 Management

The management part of tool support reflects the same needs for
configuration management as with the design and coding products of the software
life cycle. Database support is critical for the scaling up of the technology.
Evaluation tools can benefit management in determining the quality of software
life cycle products [Cardenas- Garcia91]. Additionally, the technology provides
the basis for more effective life cycle cost estimation and scheduling.

3.4 Evaluating Software Requirements and Specification Techniques

Edmonds and Urban [Edmonds84] developed an evaluation method for
software requirements and specification techniques and tools. This method is
based on evaluation criteria that appeared in the open literature, Gilb's MECCA
method, and McClure’s rating scheme. The evaluation method was applied to
Higher Order Software's USE.IT and TRW's SREM. This method was not
applied directly in this report as the method is tailored to meet the needs of an
organization and due to the dynamic aspects of the evaluation method. However,
many of the principles of the evaluation method were applied in developing this
report and could serve as the basis for applying the evaluation method.

3.4.1 Qualitative Criteria

The criteria selected for use in the Edmonds and Urban evaluation method
were divided into qualitative and quantitative criteria. The qualitative criteria
were subjective in nature and so there could be variability among a group of
evaluators.

As experimental techniques and tools, the language definitions and
prototyping tools will undergo a number of modifications and enhancements.
The modifications to techniques and tools, however, should not only be the
outcome of language theory and language designer preferences. Human factors
studies of end user and developer interactions is therefore required to pinpoint
and evaluate the most important modifications.

The information obtained through the human factors studies could have a
number of other uses. For example, the syntactic and semantic representation
mechanisms could be analyzed for optimizing the understanding of the software
functionality. To make the process of specifying easier for the developer,
additional tool support may be provided that could be helpful in guiding the
developer, and also with the functional description of the specified system. The
results obtained from the human factors studies play an important role in the
development of the capabilities described above, since the results of the studies
will be used to validate the knowledge to be embedded within the language
definition and tool support.

3.4.2 Quantitative Criteria

The quantitative criteria were objective in nature and could be measured.
and measurements could be repeated consistently. In developing this report, an
effort was made to strive for quantitative criteria.

3.4.3 Static Aspects

There were static ways in which criteria could be measured in the
Edmonds and Urban method. The static aspects of the evaluation method meant
that the criteria could be measured by reviewing the language definition or
support tool documentation. This report was based on static analysis of the
material available in the open literature.

3.4.4 Dynamic Aspects

The dynamic aspects of the Edmonds and Urban evaluation method are
criteria that require the development of a specification and/or use of the support
tools. This report did not depend on measuring the dynamic aspects of the
techniques and tools.

This section addressed software requirements and specification technology
from the standpoint of models. representation forms. tool support and

evaluations. The next section is a survey of software requirements and
specification techniques. This survey provides summary analyses for a broad
spectrum of techniques and tools.

4. REQUIREMENTS AND SPECIFICATION TECHNIQUES AND
 TOOLS FOR PROTOTYPING

This section is a summary description and analysis of twenty software
requirements and specification techniques and associated support software. The
first section is an introduction to the template that was used to overview each
technique. The next twenty sections after the introduction are the overviews of
the twenty selected techniques.

The techniques were selected for description and analysis in order to
provide a representative cross-section of software requirements and specification
technology. One criterion for selection was to include wide spectrum languages
in the analysis. Another criterion was to ensure coverage of the various models
used for requirements and specification language design.

This section concludes with Section 4.22 which is a description of the
detailed analysis that the software engineering field needs developed and centered
in a repository of information. An overview of detailed evaluation criteria is
provided for application on all the available techniques and support software.

Language and tool use should be part of the evaluation process. A candidate
set of problems is provided later in Section 5 for exercising the technology and
providing a base of case studies. The problems have been used for demonstrating
techniques that were described in the open literature.

4.1 Analysis Introduction

A template was created from the review of existing taxonomies of the field.
Each technique is described using the following template: technique overview,
method, supporting tools, language features, and strengths/weaknesses. The
template was designed to provide an approximate one page summary section of
each technique.

Each technique summary section begins with a brief history of the
technique development and, if appropriate, tool support development.
Development efforts cover the range from individual researcher through multi-
organization. The technique overview subsection provides a one paragraph
summary of the models upon which the techniques were developed. There are
several techniques included in this subsection that were based on multiple models,
e.g., object-oriented and data flow.

The method subsection describes the process by which a software developer
produces requirements and specifications with a technique and associated support
software. The support tools subsection provides a description of the software

tools used with a technique. The minimal tools for a technique would include
text editors and formatters. In some cases language processors exist for
providing executable prototypes of requirements. Analysis tools are available for
many of the techniques described below. A few of the techniques have available
a fully integrated environment of CASE tools.

The language features subsection addresses the textual, boxology, and/or
graphical forms of representing syntax and semantics. The range of textual
languages includes fixed format natural language through design-like and
programming-like languages. A technique summary concludes with a strengths
and weaknesses subsection that covers the method, tool support, and language
features in terms of executable prototyping.

The following techniques were selected for analysis based on material
available in the open literature: 1) 001 [Hamilton92], 2) Anna/TSL [Helmbold88,
Luckham85, Luckham87], 3) ANSI/IEEE Standard 830-1984 [ANSI84], 4) Arts
[Dorfman84], 5) DARTS [Gomaa84], 6) Descartes [Urban77, Urban90], 7)
ENVISAGER [Diaz-Gonzalez87a, Diaz-Gonzalez87b, Diaz-Gonzalez91], 8) GSS
[Harbert90], 9) Larch [Guttag85], 10) PAISLey [Zave91], 11) PLEASE
[Terwilliger89], 12) PROSPER [Leszczylowski89], 13) PROTOB [Baldassari91],
14) PSDL/CAPS [Luqi88a, Luqi88c, Luqi89b, Luqi90, Luqi92], 15) SBRE
[Holbrook90], 16) SLAN4 [Beichter84], 17) SPADES [Ludewig85], 18) SREM
[Alford77, Alford85], 19) STATEMATE [Harel90, i-Logix, Inc.90], and 20)
SUSL [Belkhouche86].

Further need for detailed analysis of all software requirements and
specifications techniques is described in Section 4.22. The section includes a
description of the summary and detailed analyses needed, as well as application
development with published problems.

4.2 Technique 1 - 001

001 [Hamilton90] is based on empirical research for NASA on removing
software errors from large-scale, real-time avionics software. This empirical
research led to the commercial development of the Higher Order Software
methodology and associated support software, USE.lT. 001 is an example of
second generation specification technology.

Technique Overview

001 is based on the functional model and allows for the top-down
development of a specification. 001 is applicable to a wide variety of application
domains as the, underlying theory is based on three application independent
primitive control structures: join, include, and or. An analysis capability can be
applied to a specification for detection and removal of syntactic and semantic
errors. A code generation capability allows for the execution of specifications.
including partial specifications.

Method

The control structures were developed from a set of axioms in order to
analyze specifications for internal consistency and logical completeness. The
control structures are used to develop specifications. Analyzed specifications that
do not contain language errors can be subjected to transformation into high level
language statements.

Supporting Tools

An extensive toolset is provided that includes editor support for
specification construction and modification, analysis for consistency and
completeness, and code transformation through resource allocation tools. Data
definition facilities and primitive library support capabilities support the
development of specifications.

Language Features

The three primitive control structures are developed in a top-down, tree-
structured manner to support subfunction decomposition. The control structures,
join, include, and or, are used to represent one-way communication between
subfunctions, independent subfunctions, and a choice in subfunctions,
respectively. These control structures use rigid variable tracing rules to state
function responsibilities, order, rejection, and input/output access rights. A set of
four non-primitive co-control structures allows for more flexibility in the
variable tracing rules than the three primitive control structures.

Strengths and Weaknesses

The earlier empirical work in support of the theory provides a basis for
quantifying the impact of error prevention that can be provided with this
technique. The analysis and code generation capabilities are the primary
automated support strengths for validating syntactic and semantic aspects of a
functional specification. The notation is easy to learn based on experience in
graduate software engineering courses. Breadth and depth of minimal support
libraries can have an impact on achieving rapid productivity gains.

4.3 Technique 2 - Anna/TSL

The Anna (ANNotated Ada) and TSL (Task Sequencing Language)
specification languages were developed by the Program Analysis and Verification
Group at Stanford University [Helmbold88, Luckham85, Luckham87]. The
research effort has been supported by the Defense Advanced Research Projects
Agency. Anna and TSL were developed as extensions to the Ada Programming
language with tool support for an Ada software development environment.

Technique Overview

Anna and TSL specifications are developed as formal comments that appear

as regular comments in Ada programs. The Anna and TSL formal comments are
in support of an assertional approach to Ada software development. The tool
support allows for analysis of Anna and TSL specifications. In addition, Ada
code generation from Anna and TSL specifications provide the ability for
runtime checking of Ada programs against the specifications.

Method

Anna and TSL formal comments are assertions that are inserted in Ada
programs for verification during software development. These formal comments
are processed by Anna and TSL tools, but would be ignored by validated Ada
compilers and other Ada tools which do not analyze comments. A result of this
approach is that the annotations serve as documentation for Ada programs. The
verification process is applied during software development to partial through
complete specifications.

Supporting Tools

The support tools are part of a prototype environment for wide-spectrum
languages. An extensive set of tools were developed [Luckham87] in the
categories: components, integration mechanisms, support tools, and application
tools. These tools cover the spectrum of specification analysis, code generation,
and run-time checking. The environment is integrated with Ada through
extensions to the intermediate representation mechanism of DIANA Abstract
Syntax Trees.

Language Features

Anna supports the development of virtual Ada text as comments and
annotations as formal comments. The annotations are assertions developed on
logical and program variables and can handle quantified expressions at the level
of first order predicate calculus. TSL supports the specification of interactions
between Ada tasks. These task specifications are developed for detecting task
deadlock and blocking.

Strengths and Weaknesses

The Anna and TSL specification languages are relatively easy to learn for
Ada developers who are familiar with assertions in program verification.
These specification languages can have a significant impact on the development of
reliable Ada software. The resulting documentation from using the specification
languages will support ease of maintenance. This research project is a continuing
effort and the more stable prototyped tools should be migrated to a production
environment.

4.4 Technique 3 - ANSI/IEEE Standard 830-1984

ANSI/IEEE Standard 830-1984 is an initial effort by an internationally
recognized standards organization in attempting to develop a generalized

software specification standard. Initially the working group intended to develop
a standard, but the result was a guide.

Technique Overview

ANSI/IEEE Standard 830-1984 is a guide to bring order on the use of
natural language for software requirements specification. As a guide, this
document does not constitute a mandated standard.

Method

ANSI/IEEE Standard 830-1984 prescribes a fixed outline approach to the
development of software requirements specification. The outline consists of four
parts: introduction, general description, specific requirements, support
information. The introduction, general, and support sections can be considered as
a generic part that applies to all software systems development. The specific
requirements part provides four different outlines for the detailed development
of a specification. These four outlines use the same components in different
arrangements depending upon project organizational issues and problem
application domain.

Supporting Tools

The supporting tools for ANSI/IEEE Standard 830-1984 include general
purpose text editors and documentation formatters. There is limited opportunity
for automated analysis of a specification as this approach is primarily natural
language. This technique could be integrated within a more sophisticated natural
language approach, such as ARTS [Dorfman84].

Language Features

ANSI/IEEE Standard 830-1984 uses natural language in a fixed format.
Beyond the fixed outline there is a wide spectrum of natural and formal
approaches that can be incorporated with the technique. This flexibility would
defeat the standard goals, unless an organization mandates the approach to the
non-fixed part.

Strengths and Weaknesses

This approach alone has limited applicability to prototyping software
systems. However, the technique can bring control to an organization that is
using ad hoc techniques. A new software requirements specification standard is
expected to capitalize on the advances made in formal languages during the
1980s.

4.5 Technique 4 - ARTS

The Automated Requirements Traceability System (ARTS) was developed
in the late 1970's by the Lockheed Missiles & Space Company, Inc. [Dorfman84].

The system is an early effort in automating software requirements bookkeeping.
The system manages natural language software requirements for traceability.

Technique Overview

 The technique uses a hierarchical decomposition of natural language
software requirements in a database. Specified formats are used for stating
requirements. Software functionality is described in natural language. More
rigid formats are used for input, output, and data structures.

Method

A specification developer builds a database of hierarchically decomposed
software requirements. The constructed requirements can be retrieved,
modified, and formatted in report form. Traceability is obtained through the
tree structured storage of the requirements. The requirements reports support
technical program reviews and test plan development.

Supporting Tools

In the mid-1980s, ARTS was implemented on UNIVAC, DEC, and IBM
machines. A powerful user interface supports requirements formulation and
analysis. A relational database system, RIMS, provides the requirements storage
and retrieval capability.

Language Features

Requirements formulation is performed according to specified formats.
Allocation links ensure that higher level requirements flow down to lower level
requirements for maintaining traceability. ARTS could be adapted to handle
software requirements developed under ANSI/IEEE Standard 830-1984.

Strengths and Weaknesses

ARTS represents mature first generation technology to capture software
requirements. There is limited prototyping support for other than input and
output formats. A simulation facility could walk the user through the
hierarchical structure as an enhancement to the support software. Development
of explicit links to design, code, and test documents would provide traceability
throughout the software life cycle.

4.6 Technique 5 - DARTS

The Design Approach for Real-Time Systems (DARTS) was developed by
Gomaa at the General Electric Industrial Electronics Development Laboratory
[Gomaa84]. Although described as a design method, DARTS bridges the
software requirements specification and design phases. The DARTS development
was influenced by techniques developed during the late 1970.

Technique Overview

DARTS is built upon concepts from functional, data flow, and
object-oriented techniques. The real-time application domain required the
development of language features to support task communication and
synchronization. DARTS uses a graphical approach to represent a software
system.

Method

DARTS uses data flow diagrams as the first level of decomposition of
system requirements. This approach allows for interface definition of subsystems
early in the software life cycle. The first level decomposition leads to a software
system structuring that exploits tasks in parallel and sequential execution. The
task identification then allows for a redefinition of the initial decomposition,
followed by design and implementation.

Supporting Tools

DARTS was reported [Gomaa84] as a manual technique with no supporting
tools. The advent of relatively low cost bit mapped displays provide a practical
outlet for this technique. Experience gained since the mid-1980s on developing
support tools for late flow methods would indicate that a DARTS implementation
would be low risk.

Language Features

DARTS uses language features from structured analysis and structured
design. DARTS employs information hiding principles through task interfaces.
A task synchronization module and task communication module implement the
information hiding.

Strengths and Weaknesses

DARTS is a process model approach that is real-time language
independent. A major benefit of DARTS is decomposition and partitioning into
concurrent tasks. The prototyping capabilities are limited to manual analysis.
However, automated support would enhance DARTS based development and
simulation of requirements.

4.7 Technique 6 - Descartes

Descartes is one of the earliest executable specification languages having
been developed in 1977 as part of Ph.D. dissertation research [Urban77,
Urban90]. The language has been limited to laboratory use as a research tool and
in graduate software engineering courses.

Technique Overview

Descartes is based on data structuring methods proposed by Hoare. A tree
structure notation is used to perform analysis and synthesis of data. Most of the
research effort associated with Descartes has been on providing extensions to the
original tool support. However, real-time extensions to the language definition
have been recently under development, as well as computer-aided transformation
support for mapping Descartes specifications into object oriented designs.
Descartes specification technology has matured to the point that a commercially
viable product could emerge in the mid 1990's.

Method

Descartes specifications are developed in a top-down modular fashion.
Partial specifications are supported through partial refinement of the tree
structure notation. The specifications are executed through interpretation. Once
the specifications are completed, any design technique could be used as the next
step in the software process.

Supporting Tools

An interpreter exists for executing Descartes specifications on abstract and
concrete data. This abstract execution feature allows for dynamic analysis of
partial specifications. Initially developed in PL/I on Multics, the interpreter
currently is written in C on UNIX and executes on a Sun workstation. An
automatic test data generation capability was developed to generate input data
based on path analysis. Recent work on the support software has focused on
extending the visual representation mechanisms for the specifications.

Language Features

The three data structuring methods of Hoare used in Descartes are direct
product, discriminated union, and recursion, which are the same as those used in
the Jackson Design Method and Jackson Structured Programming. However, in a
Descartes specification the data structuring methods are used in tree structures to
define the input and output data. where the analysis of the input data is such that
output data can be synthesized as a function of the input data.

Strengths and Weaknesses

The training time for learning Descartes is little, based on over a decade of
graduate course experience. The language is simple to use, but powerful for
demonstrating software functionality early on in the software life cycle. One
aspect of using Descartes is in run-time overhead of the language processor due
to the matching process applied to the tree structures.

4.8 Technique 7 - ENVISAGER

The ENvironment for the VIsual Specification And Graphical Execution of
Requirements (ENVISAGER) [Diaz-Gonzalez87a, Diaz-Gonzalez87b,
DiazGonzalez91] is a visual requirements engineering environment for the
specification of real-time systems. The development of the environment has been
partially supported by Bell-Northern Research. The ENVISAGER environment
is a prototype and has been limited to laboratory use as a research tool.

Technique Overview

ENVISAGER is based on a conceptual model using an object-oriented
approach, with the interaction between objects being specified by Interval
Temporal Logic formulas. The environment utilizes high-level graphical
representations of the actual objects in the application being specified and
animates the objects to represent the operations.

Method

The technique is supported by a high-level graphical interface that
incorporates notions which are common in real-time systems, such as messages,
processes, and timers. An extension to traditional first order logic that provides
mechanisms for specifying time varying properties of systems was used as the
underlying formalism of the technique.

Supporting Tools

By using the graphical interface, a software engineer is able to specify the
dynamic behavior of a system. In addition, the graphical specifications are
reused by a simulator providing animation facilities. By using the animation of
specifications, the execution of concurrent and time-constrained activities can be
examined in detail by the software engineer, and in this form determine the
validity of the requirements early in the development stage. The animation
facility currently executes a fixed set of test cases.

Language Features

The underlying representation mechanism within ENVISAGER is Interval
Temporal Logic which provides a facility for the description of constraints on a
system with respect to the execution state of abstract operations. Namely, the
logic provides facilities for specifying that the system is at A (just before the
beginning of execution of A), in A (within the execution of A), and after A (just
after finishing the execution of A), where A is an abstract operation. The recent
incorporation into the environment of an abstract data type definition facility
improves the reusability of objects, and through the inheritance of object
behavior, also facilitates the description of new objects. For example, a datavoice
terminal could be defined through the inheritance of operations provided by data
terminals and voice terminals, therefore only the constraints that control the

contention for shared resources in the object need to be developed in the
specifications.

Strengths and Weaknesses

A primary strength of ENVISAGER is in the significantly different means
for demonstrating functionality to the end user. Demonstrating functionality
through the animation of the actual objects that are part of the end user's system
provides a realistic representation mechanism. Software developers of the
Interval Temporal Logic representation of the objects need a mathematical
background through first order logic. However, the software engineers who are
the users of the objects need to tailor the object definitions to meet the needs of
the application. Additional tool support is needed to assist in the tailoring of
objects.

4.9 Technique 8 - GSS

The development of the Graphical Specification System (GSS) is a joint
software environment effort between Texas A&M University and Lockheed
Software Technology Center [Harbert90]. GSS represents second generation
specification technology. GSS is part of the Express [Topping87] project (not the
proposed national standard, Express [van Delft89]), which is a knowledge based
approach to prototyping embedded systems.

Technique Overview

The application domain for GSS is the user interface specification for
realtime embedded systems. The technique uses object-oriented, data flow, and
functional techniques to rapidly prototype a user interface. A GSS user interface
specification can be linked to specifications of the remainder of an application to
complete the prototyping process. This syngerism of user interface and
application specifications enhances the significant benefits that can be obtained
from having the user approve only the interface.

Method

GSS uses a library of graphical display units with default interactions as the
basis for defining a user interface. The interactions of graphical display units can
be modified to meet the application needs. A separate back-end specification
technique defines the interface between the user interface and application
software.

Supporting Tools

GSS includes supporting tools for icon generation/retrieval, display
generation, and linkage to application software. The library is extensible for
tailored/existing library units, as well as new application domain icon
development.

Language Features

The graphical display units allow a software developer to visually specify
the objects that an end user will need in a system. The underlying representation
mechanism for end user interactions with objects is state transition diagrams.
These state transition diagrams exist for library display units and may be
modified to meet application needs. Data flow diagrams are used as the backend
specification link with an application.
on.

Strengths and Weaknesses

This technique and tool support represent critical technology for currently
meeting the needs of icon-based software development. An icon-based approach
to prototyping user interface development should significantly reduce end user
and developer misunderstandings. Extensive library development is needed to
significantly improve productivity, which will come with further experience.

4.10 Technique 9 - Larch

The Larch specification languages were developed as part of a project at
MIT's Laboratory for Computer Science and DEC's Systems Research Center
[Guttag85]. The Larch project builds on the researchers' foundation in algebraic
specification languages, since the mid-1970. This project has been supported by
the Defense Advanced Research Projects Agency (DARPA), Digital Equipment
Corporation. Xerox, and the National Science Foundation (NSF).

Technique Overview

A two-tiered approach to software specification is used with the Larch
family of languages. The first language, Larch Shared Language, is an algebraic
specification language that is used for all programming languages. The second
language, Larch interface language, is one of many languages tailored to
individual programming languages.

Method

Developing a Larch Shared Language specification involves constructing a
theory for an abstract data type. The theories are referred to as traits, which are
the Larch Shared Language units for software reuse. Larch/Pascal and
Larch/CLU interface languages have been developed as second-tier languages.
These Larch interface languages provide the means for specification of data and
procedural abstraction.

Supporting Tools

A set of tools has been under development in the Larch project.

Specification construction is through syntax-directed editing to allow for
incremental checking during development. A theorem prover supports semantic
checking. Tools have also been proposed for specification management and
browsing. Tool support for the AFFIRM abstract data type language [Musser80]
has influenced the developers of the Larch tool support.

Language Features

A Larch Shared Language trait can consist of seven clauses: assumes,
includes, imports, introduces, constrains, converts, and exempts. The constrains
clause includes the axioms regarding the operations on an abstract data type. The
Larch interface languages have three parts for specifying data abstraction:
header, trait/type mapping, and operations interface. In addition, the Larch
interface languages have three parts for specifying procedural abstraction:
header, traits with theory of operators, and a body of routine effects.

Strengths and Weaknesses

The Larch family of languages is a powerful set of specification languages
for software reuse of abstract data types. The syntactic and semantic checking
capabilities will benefit software productivity and reliability. Automated
transformation between the shared, interface, and programming languages would
further benefit this approach.

4.11 Technique 10 - PAISLey

PAISLey was originally developed as part of Ph.D. dissertation research in
the late 1970's [Zave91]. The early 1980's witnessed the application of the
technology on a variety of applications. Software tools in a UNIX-based
environment to support the analysis and execution of specifications began to
emerge in the mid-1980s while the language developer was at AT&T Bell
Laboratories.

Technique Overview

PAISLey is a Process-oriented, Applicative, and Interpretable Specification
Language based on the process model and therefore well-suited for the real-time
application domain. This model evolved as a result of merging asynchronous
processes and functional programming with exchange functions.

Method

The PAISLey approach involves decomposing a system into a set of
asynchronous processes that are analyzed and executed. Thus, the end user and
software developer must address event and timing issues early on in the software
life cycle. The notation is such that the software engineer develops the
specification and the end user reviews the executable functional specification.
The tool support aids both developer and user with identifying consistency and
completeness errors.

Supporting Tools

The set of software tools supporting PAISLey include syntax and semantic
checking through a cross referencer, static analysis through a consistency
checker, and execution of specifications through an interactive interpreter. The
interpreter provides dynamic analysis in process and time dimensions.

Language Features

A PAISLey specification for a software system consists of a set of
asynchronous processes which are described in a graphical (boxology) notation
based on finite state machines. Exchange functions provide support for stating
synchronization and communication among the asynchronous processes. In
addition, the language provides features for timing constraints at behavioral,
architectural, and atomic levels.

Strengths and Weaknesses

A major strength of PAISLey is ease of use for both the language
(provided there is not an explosion of processes) and support software. Early
life cycle feedback to the end user is another benefit attained with PAISLey.
However, performance testing is not currently supported in the toolset.

4.12 Technique 11- PLEASE

The PLEASE specification language was developed by the Software
Automation, Generation, and Administration (SAGA) project as part of the
ENCOMPASS software engineering environment [Terwilliger89]. PLEASE is
an executable specification language developed as part of Ph.D. dissertation
research. The research was supported under a NASA grant in the mid-1980s.

Technique Overview

PLEASE is an Ada-based specification language which uses annotations that
are converted to Prolog for execution. The language design was influenced by
Anna and VDM. The specification language and tools are used for prototyping
through incremental development.

Method

A multi-level approach is used by a developer for software development
with PLEASE, which is based on the assertional model. The first level is an
abstract specification of end user needs. The abstract specification is then
validated against the end user needs. The second level is a design transformation
that is verified with a theorem prover. This refinement proceeds to the lowest
level or decomposition.

Supporting Tools

Development or PLEASE specifications is supported through a language
oriented editor that performs syntactic and semantic checking. A proof
management system, TED, is linked to theorem provers for verification. For
execution, there is a transformation tool that generates Prolog code and the
necessary Ada code to invoke Prolog procedures.

Language Features

PLEASE has pre- and post-conditions for the specification of assertions
that are used for validation and transformation. The assertions extend Ada in a
manner similar to Anna [Luckham85, Luckham87]. PLEASE predicates are
similar to Prolog predicates.

Strengths and Weaknesses

PLEASE is a unique integration of language designs, which includes Ada,
Prolog, and VDM. The language is part of the ENCOMPASS environment,
combining executable specifications with programming-in-the-large. There is a
run-time overhead associated with the use of Prolog. This overhead will be
reduced as logic programming technology advances. However, the overhead is
minor compared to the benefits of verification during incremental development
of software.

4.13 Technique 12 - PROSPER

The PROtotypes and SPEcifications with Relative types (PROSPER)
specification language was developed by researchers at the Polish Academy of
Sciences and Colorado State University [Leszczylowski89]. The PROSPER
language definition was influenced by Vienna Development Method (VDM)
[Jackson85], Z [Norris90], and the abstract data type model. Although PROSPER
is based on non-executable specification languages, the result is a fully typed (not
strongly typed) language suitable for the execution of prototypes.

Technique Overview

The PROSPER specification language is based on the process model.
Abstract data types are developed as fully typed objects and associated functions.
Polymorphism and dependent types are used to parameterize type expressions.
The language is similar in nature to the Larch Shared Language [Guttag85]
approach to building reusable software components.

Method

The PROSPER specification language is a kernel based on primitive
language constructs. Higher level abstract specifications are built in PROSPER
on the primitive constructs. This approach is closer to detailed specification than
requirements engineering. However, the introduction of VDM and Z language

concepts is innovative.

Supporting Tools

A prototype PROSPER interpreter was reported as under development
[Leszczylowski89]. The language structure is such that a syntax-directed editor
would benefit construction productivity and consistency checking.

Language Features

PROSPER differentiates between a basic world for the object level logic
and a super world for the meta level logic. The two worlds are part of an
infinite hierarchy of universes. The language features include: parameterized
type expressions, value/module declarations, and special type operators.

Strengths and Weaknesses

PROSPER forms the basis for building libraries of reusable components.
Linking PROSPER with a higher level specification language supporting
synchronization and communication constructs would facilitate real-time system
development. Executable prototypes, although at the abstract data type level, will
benefit reuse component retrieval.

4.14 Technique 13 - PROTOB

PROTOB was developed at the Politecnico di Torino under partial funding
through the Italian C.N.R. Project, Progretto Calcolo Parallelo obiettivo
SPECTER [Baldassari91]. PROTOB represents a second generation executable
specification language for prototyping real-time systems. The technique combines
the graphical and textual approach.

Technique Overview

PROTOB uses an object-oriented method that is based on PROT nets,
which are high-level Petri nets [Bruno86]. This technique is targeted for event-
driven systems. The functionality of a system is described in terms of states and
state transitions. An extensive environment was developed to support the
technique.

Method

There are three major phases in the development of PROTOB
specifications, which are modelling, emulation and application generation. A
hierarchical architecture of graphical objects is developed in PROT nets. The
objects are represented in a boxology which may be animated graphically in a
discrete-event simulation. The emulation phase is a refinement of a PROT net
model to handle implementation details. Finally, the application generation phase
establishes links to the hardware and software environment.

Supporting Tools

The PROTOB environment includes the following kernel tools:
editor/animator, translator, simulator/emulator, report generator, and script
generator. The environment executes in a distributed architecture of VAX/VMS
and UNIX machines. The toolset supports consistency and completeness checking
of specifications.

Language Features

The use of high-level Petri nets does not result in a large number of objects
as in other process models. Open and closed objects differentiate externally
communicating and internal objects, respectively. External objects are referred
to as software chips.

Strengths and Weaknesses

PROTOB builds on advantageous features of the object-oriented, data flow,
and Petri net approaches to specification development. The PROTOB
environment is an integrated set of tools for comprehensive requirements
engineering support. An automated test data generation capability would enhance
this prototyping technology.

4.15 Technique 14 - PSDL/CAPS

The Prototype System Description Language (PSDL) and Computer-Aided
Prototyping System (CAPS) [Luqi88a, Luqi88c, Luqi89b, Luqi90, Luqi92] is a
software specification language and set of support software for rapidly
prototyping large-scale, real-time, embedded software systems. The research
effort for the development of PSDL/CAPS was conducted primarily at the Naval
Postgraduate School with partial support through the National Science
Foundation.

Technique Overview

This approach is an operator, data, and control abstraction technique that
supports retrieval of software components through a software base. PSDL
supports the development of prototypes that demonstrate functionality through
execution. There is a well-defined hand-off to the Ada programming language at
the detailed design level.

Method

The method supports iterative development of software requirements based
on end user needs. The executable prototyping capability provides the end user
with rapid feedback, especially during feasibility studies. The method maps to
the Ada programming language as the basis for implementation through reusable
components.

Supporting Tools

The tool support for PSDL includes a static scheduler, translator, dynamic
scheduler, software base management system, syntax directed editor, and
paraphraser. The execution aspects of the language appear to be best suited for
translation into Ada.

Language Features

The computational model uses data streams to communicate with operators.
Control constraints allow for the specification of real-time operators, triggers,
timers, and conditionals. Timing and hierarchical constraints are also supported
in the language definition.

Strengths and Weaknesses

PSDL has a set of abstractions suitable for developing large-scale, complex,
real-time software systems [Luqi92]. The language and system serve as an
executable prototyping approach for specification or design. However, further
work on PSDL has been proposed for handling tight real-time constraints in a
distributed computing environment. The software base could be the driving
factor on achieving significant productivity gains.

4.16 Technique 15 - SBRE

The Scenario Based Requirements Elicitation (SBRE) technique was
developed by Captain Hilliard Holbrook III at the US Air Force Academy
[Holbrook90]. This technique addresses a formalization for improving initial end
user and developer communications. This research effort is continuing at the
University of Florida.

Technique Overview

SBRE is intended to serve as a bridge between the concept in the end user's
mind and the developer's elaboration of the concept. There is a capability to
concurrently develop the requirements with the high level design.
Software system scenarios are the primary means for communicating end user
requirements. This approach is similar to other scenario-based techniques
[Hsia86, Hallman88].

Method

A conceptual architecture is developed to describe the user's world and the
designer's world. The conceptual architecture consists of four sets of
information: goal, scenario, issue, and design. The scenario and issue sets bridge
the two worlds, while the goal and design sets are part of the user and designer
worlds, respectively. The requirements elicitation process has three phases of
goal elaboration, scenario elaboration, and scenario evaluation.

Supporting Tools

Hypertext tool support is envisioned for software requirements/design
construction and management. Holbrook described a proposed Apple Hypercard
implementation. An SBRE architecture would be maintained on five stacks for -
the four information sets, as well as constraint information.

Language Features

A user's goal set can include requirements, constraints, standards, and
available resources. The design set of the designer's world is a base of high-level
designs and design decisions. An SBRE scenario set is a behavioral specification
of the designer's interpretation of the goal set. The issue set can include
assumptions, responses, and implications.

Strengths and Weaknesses

This proposed technique addresses a means for providing structure on end
user and developer interactions. Further work is needed and planned for
implementing this approach to reducing misunderstandings early in the software
life cycle. Linking the high-level designs to a software reuse library would
provide support for executable prototypes.

4.17 Technique 16 - SLAN-4

Software Language-4 (SLAN-4) is a specification and design language that
was developed at IBM Laboratories, Boeblingen, West Germany, beginning back
in 1978 [Beichter84]. The language focus is on specifying and designing abstract
data types and modules through four approaches.

Technique Overview

The technique is used after software requirements formulation and analysis
as a means to capture functional specification through detailed design, as the early
real-time technique, EPOS [Biewald79]. The functional model is the basis from
which SLAN-4 was developed with data and functional abstraction. The explicit
linkage between specification and design provides a means for minimizing phase
to phase transition problems.

Method

The four approaches to SLAN-4 specifications are: abstract data types,
algebraic specifications, axiomatic specifications, and pseudocode design. The
first approach uses a class construct as a means to achieve abstract data type
definitions. The second approach uses algebraic specifications to define the
relations between abstract data types and modules. The third approach uses pre-
and post-conditions to axiomatically define a specification module. The fourth
approach allows for the detailed design of the remainder of the system.

Supporting Tools

There was no tool support for SLAN-4 in 1984 [Beichter84]. However,
the developers suggested the following tool support: syntax-driven editor,
syntactical/semantical checking, and a database. However, the developers also
noted that SLAN-4 specifications "cannot necessarily be translated into machine-
code by a compiler."

Language Features

The class construct in SLAN-4 allows for the top-down development of
data abstractions. A class is composed of an interface declaration, class
specification, class and module declarations, and instantiation statements. A
module is composed of an interface declaration, result type, module specification,
class and module declarations, and statements. A module specification allows for
the axiomatic definition of module pre-expression and post-expression, optionally
intermediate expressions, and expressions for exceptions. The statements part of
the specification is stated in pseudocode.

Strengths and Weaknesses

SLAN-4 was reported as being applied to an industrial software product
that resulted in about 18,000 lines of high-level language source code. The
experience base available on algebraic and axiomatic specifications is such that
software engineers with sufficient formal notation background should have
minimal difficulty with the syntax and semantics of SLAN-4. However.
difficulties with developing the axioms for new applications are a drawback of
using this technique. In addition, the lack of tool support will impact
productivity and reliability.

4.18 Technique 17 - SPADES

The SPecification And DEsign System (SPADES) was developed at Brown
Boveri Research Center in Switzerland [Ludewig85]. The system is a direct
evolution of the developer's earlier work on PCSL, which was followed by
ESPRESO [Ludewig83]. ESPRESO was developed for real-time system
specification at the Nuclear Research Centerin Karlsruhe, Federal Republic of
Germany. The researchers were influenced by PSL/PSA [Teichroew77], SREM
[Alford85], and the Entity-Relationship model [ChenP90].

Technique Overview

SPADES consists of a specification method (SPADES-M), language
(SPADES-L), and set of tools (SPADES-T). The specification language is a
textual approach (with some boxology capability) that has comprehension
comparable to programming languages. The initial toolset, although small, has
tools for specification construction, storage, retrieval, and report generation.

Method

Specifications developed in SPADES-L are analyzed and stored in a
database by the SPADES-T set of tools. Access control mechanisms in SPADES-
T ensure the integrity of a specification under development. The entity-
relationship concepts in SPADES guide a specifier in identifying objects and
links.

Supporting Tools

The SPADES-T toolset is implemented in Modula-2 in VAX/VMS. A
SPADES-L analysis tool provides consistency and completeness checking
capabilities. A conversion and deconversion tool translates specifications for
storage and retrieval in the database. The report generation tool can provide six
reports: content, hierarchy of modules and informal objects, call structure, data
flow, range check. and completeness.

Language Features

SPADES-L can describe eight kinds of objects: modules, actors,
parameters, media, types, intervals, constants, and informal objects. In addition.
SPADES-L can describe six kinds of relations which are used to link objects.
The SPADES-L relations include: hierarchies (and other structures),
communication coordination, execution schedules, restrictions, and general
references. The language structure has been referred to as Pascal-like.

Strengths and Weaknesses

SPADES was developed on solid software requirements specification
technology that emerged in the late-1970. The user base of real-time system
developers influenced enhancements to SPADES. A syntax-directed editor would
aid the development of SPADES-L specifications. A code transformation tool is
needed to provide an executable prototype capability.

4.19 Technique 18 - SREM

The Software Requirements Engineering Methodology (SREM) was
initially developed by TRW in Huntsville, Alabama [Alford77, Alford85] under
the Software Development System project of the US Army Ballistic Missile
Defense Advanced Technology Center (BMDATC) [DavisC77]. SREM later
evolved to the Distributed Computing Design System through additional
BMDATC support and through support from the C3I program at the US Air
Force Rome Air Development Center (now Rome Laboratory). More recently,
SREM and DCDS further evolved into a commercial product.

Technique Overview

SREM is based on the functional model where software requirements are
developed in the Requirements Specification Language (RSL) in either textual or

graphical (boxology) form. The Requirements Engineering Validation System
(REVS) supports simulation of RSL specifications that are maintained in a
database.

Method

Software requirements are formulated in RSL, stored in the REVS
database, analyzed for consistency and completeness errors, and simulated to
demonstrate software functionality. Performance constraints, such as events and
timing, are identified during requirements formulation and analysis for
validation against the end user needs. In addition, automatic documentation
generation is provided as a benefit of using SREM.

Supporting Tools

The REVS support software includes tools for both textual and graphical
development, extraction, modification, and documentation of RSL specifications
through the editor and database tools. Static and data flow analysis is provided
through the RADX tool. Dynamic analysis is provided through simulation tools
that support both functional and performance aspects of the specifications.

Language Features

The language, RSL, has language primitives for element, attribute, and
relationship primitives which are closely analogous to the English language
equivalent of noun, adjective, and verb, respectively [Bell77]. The language
definition contains twenty-one elements to define features, twenty-one attributes
to describe elements, and twenty-three relationships to describe element
connections. Structures, the fourth primitive mechanism in RSL, are used to
describe processing sequences. The language includes a facility for user extension
of the primitives.

Strengths and Weaknesses

SREM is proven technology for software requirements engineering based
on longevity and success in a wide variety of real-time applications. One of the
most extensive applications of SREM technology [Scheffer85] was for a highly
complex C3I application. One SREM drawback is in the size of both the RSL
specifications and the REVS support software, which impacts the learning curve
and run-time efficiency aspects of using the technology.

4.20 Technique 19 - STATEMATE

The STATEMATE system was developed in the mid-1980s by i-Logix
Inc., Burlington, Massachusetts and Ad Cad, Rehovot, Israel [Harel90, i-Logix,
Inc.90]. The system is commercially available through i-Logix, Inc. in the United
States. The STATEMATE tools are used for specification, analysis, design, and
documentation.

Technique Overview

STATEMATE supports the specification and design of a software system
through multiple viewpoints of objects: structural, functional, and behavioral.
Three types of charts are used to obtain the multiple viewpoints. These charts
are used to represent modules, activities, and states in a graphical representation
form.

Method

In STATEMATE, the structure of a software system is developed through
physical decomposition and information flow analysis. The functionality of a
software system is obtained by functional decomposition and information flow
analysis. The behavior of a software system is derived from control mechanisms
and temporal relations. The order of developing the viewpoints is as described in
this paragraph. However, there appears to be no restrictions on the ordering on
the decomposition and control, which can be viewed as providing flexibility.

Supporting Tools

The STATEMATE system is implemented on Apollo, Digital Equipment
Corporation, and Sun Microsystems workstations. The system executes in the
UNIX and VMS operating systems with several windowing systems. The toolset
is extensive with graphics and forms editors, analysis support, simulation/code
generation capabilities, report generators, management functions' document
generation, and a database.

Language Features

A module-chart describes the structural view of a system with external and
internal modules. An activity-chart combines data and control flow to form the
structural viewpoint. Statecharts are an extension to finite state machines and
state transition diagrams for developing the control in the behavioral viewpoint.

Strengths and Weaknesses

The STATEMATE system has been successfully applied to the development
of real-time systems. Multiple viewpoints are viewed as an advantage, but that
has not been reported as having been measured empirically. The simulation
facilities provide for a rapid prototyping capability. Code generation is
supported for the Ada and C programming languages.

4.21 Technique 20 - SUSL

SUSL is an abstract data type specification language that was developed as
part of Ph.D. dissertation research [Belkhouche86]. The SUSL language design
was influenced by the algebraic specification approach and OBJ [Goguen79], as
well as later influence from OBJ2 [Futatsugi85]. SUSL was developed as a
formal specification language to support transformation to high-level language

constructs.

Technique Overview

SUSL is based on the process model for the definition of abstract data types
and their associated operations. SUSL has the wide range of applicability that is
associated with algebraic specification techniques. Assertions are used to describe
the semantics of the operations on the abstract data types. The code
transformation capability allows for rapid prototyping of abstract data types.

Method

A specification developer uses the object-oriented approach to identify
datatypes and operations. Input and output assertions on the operations describe
the semantics. An input assertion is a relation or invariant of components that
must be true upon entry to an operation. An output assertion is similar to an
input assertion, where the condition applies upon exit.

Supporting Tools

The SUSL support software was developed in PL/I on the Multics
operating system. An analysis capability provides, syntactic, consistency, and
completeness checking. A synthesis capability provides for the automatic
generation of PL/I or Pascal code from error-free analyzed specifications.

Language Features

Language defined abstract data structures include: sets, sequences, cartesian
products, and discriminated unions. The syntax of a SUSL specification is
centered around the abstract data type. Each abstract data type is described with
the following sections: header, interface, abstract representation, initialization,
operations, restrictions, and tail. The language supports generic abstract data
types through parameterization in the header. The operation section is used for
describing operation behavior through the input and output assertions.

Strengths and Weaknesses

SUSL provides a powerful specification technique in that reliability can be
improved through the requirement for input and output assertions on operations.
The effort to develop the assertions is comparable to other algebraic and
axiomatic approaches. Productivity gains can be achieved through the
transformational approach to code generation. The tool support would benefit
from the development of a syntax-directed editing capability. Porting the SUSL
tool support to an Ada-based environment and providing an Ada code generation
capability would complement SUSL and Ada.

4.22 Further Technique and Tool Analyses

This section includes the basis for further detailed analysis of the software

requirements and specification techniques. The detailed analysis described in this
section was based on criteria that have appeared as important to requirements and
specification technique developers, software engineers who use the techniques,
and software project managers.

4.22.1 Software Requirements and Specification Repository

This section has provided summary descriptions and analyses for a wide
cross-section of software requirements and specification techniques. A
comprehensive repository for software requirements and specification technology
would benefit the field of software engineering. Software application developers,
project managers, language designers, and tool builders would have access to the
repository. The repository could be an integrated version of the CASE tools
activities performed at the US Air Force Software Technology Support Center
(Ogden ALC/TISAC, Hill AFB, Utah) and the process assessment activities at the
Software Engineering Institute (Carnegie Mellon University, Pittsburgh,
Pennsylvania).

The repository activities should include developing and maintaining
information on non-proprietary software requirements and specification
technology. This information should consist of summary and detailed analyses of
the techniques and tools. The summary analyses could be at the level of detail
and similar format that was used for this report. The summary analyses would
be useful for initial study by browsing as with a bibliographic database of
publication abstracts.

4.22.2 Detailed Analyses

The detailed analyses should be developed consistently across all the
techniques. The detailed analyses would be used as the basis for technique
selection by a software development group. An evaluation method similar to the
Edmonds and Urban approach [Edmonds84], described in Section 3, should guide
the development of the detailed analyses. The selection of techniques by software
development groups, under an approach like the Edmonds and Urban method,
would involve establishing the weighting factors for each group. The detailed
analyses should address at least the following sixteen categories with regards to
software development: conceptual development support, processing, formal
foundation, analysis method, basic structures, graphical support, interfaces,
abstractions, proofs of correctness, control flow, comments, software life cycle
model, training, applicability, management support, and availability.

 In terms of conceptual development support the techniques should be
assessed with regards to the level of abstraction, software reusability, user
defined types, and reverse engineering. The executable processing of
requirements and specifications would be described for code generation.
executable specification. pre-defined routines, and knowledge base capabilities.

The formal foundations of the techniques should address in the analyses

whether finite state machine, data flow, stimulus-response path, communicating
processes, function composition, and/or data oriented foundations were the basis
of the technique design. The analysis method used by the techniques can be
decomposed into the following models: process, data, control, object, natural
language, knowledge base, and assertional. The syntactic and semantic basic
structures can be categorized according to which of the following forms are used:
high level language constructs, set expressions, tree structures, objects, and
textual form. When graphical support is provided with a technique there is
typically data-flow diagrams, control-flow diagrams, tabular forms,
object-oriented diagrams, and actual objects.

The language features part of the analyses should include interfaces. These
interfaces include internal language interfaces for procedures, data, and tasks. A
broader set of external interfaces include phase-to-phase transition across the
software life cycle, tool integration, and platforms. More specifically in terms of
language features, there is a need to determine the support for abstractions in
terms of data, procedural, classification hierarchy, and inheritance mechanisms.
Techniques that support proofs of correctness concepts will include features for
pre- and post-conditions, rewrite rules, and/or Boolean values. Control flow
would be assessed in terms of features for specifying sequential processing,
parallel processing, and timing constraints. Lastly in language features,
comments may not be part of a technique, but when these are included there can
be formal and informal approaches used.

Software project management issues should be addressed in the detailed
analyses. The different software life cycle models in which a technique can be
used should be one or more possibilities of waterfall, prototype, spiral, and
transformational models. The training support can take the forms of manuals,
formal training/education programs, and on-line support through help files, as
well as computer-based instruction. The applicability of a technique should be
described in terms of the categorization used by Boehrn, which is embedded,
organic, and semi-detached types of applications. The management support
available should measure tool support for configuration management, static
analysis, and dynamic analysis. Finally, the availability of technique and tool
support should describe how the technology can be acquired and the availability
of user groups.

4.22.3 Applications Development

This repository will need to develop a variety of applications in order to
support the detailed analyses. A set of candidate problems is needed to
accommodate the dynamic analysis part of an evaluation technique like the
Edmonds and Urban method. Managing the development of the applications
would be necessary to ensure consistency. This management is also needed to
obtain the measures that demonstrate success or failure with a technique.

This repository will also benefit the developers of software engineering
standards. The field has matured to the point that the International Standards

Organization standard specification languages, SDL, Estelle [Budkowski87], and
LOTOS [Biemans86], exist for protocols. The extensions to ANSI/IEEE
Standard 830-1984 and other wide spectrum specification language standards
would benefit from access to information in the repository. In addition, the level
of field maturity suggests that a theory of specification languages would abstract
the research efforts over the past twenty years. The repository would serve as
basis for applying a specification language theory. Finally, the repository would
benefit from the lessons learned in establishing the Requirements Engineering
Testbed at Rome Laboratory.

This section has provided a survey of software requirements and
specification technique with a view towards prototyping. A template was used
for developing each summary description in order to have as uniform
descriptions as possible. The section concluded with a description of detailed
analyses that should be developed to assist the software engineering community.
The next section addresses software technology transfer and more specifically the
problems and a potential solution for software requirements and specification
technology.

5. SOFTWARE ENGINEERING TECHNOLOGY TRANSFER

One mayor problem in software engineering that has had an impact on this
new technology is the slow rate of technology transfer. This section addresses
problems of technology transfer in software engineering. A potential solution
involves building a base of components through the coupling of forward
and reverse engineering.

5.1 Overview of the Problem

Software technology transfer is typically recognized as an average of seven
years. Note that the lifespan of the MCC Software Technology Program
[Belady92] was seven years. This average technology transfer time has been
longer for requirements and specification technology. This problem is addressed
below in terms of time, behavior, management, and quick-fix solutions.

5.1.1 Technology Transfer Time

The technology transfer time for requirements engineering and
prototyping technology has been longer than other software engineering
techniques and tools. This time length has been primarily due to the significant
investment in large-scale software systems. This investment means that
organizations have been reluctant to integrate this technology unless the
technology is to be used for new systems development. Organizations have also
been reluctant with regards to reengineering of existing systems. This reluctance
is waning with the emergence of reverse engineering techniques and tools.

5.1.2 Behavioral Process

Another technology transfer problem relates to an inability to understand
the behavioral processes involved in integrating this new technology. There are
multiple aspects of behavior that impact technology transfer. One aspect is the
ability of software developers to accept change in the methods that have worked
successfully in the past. In many cases, if a formal notation is part of a new
technique, there is a need for mathematical skills to be revisited or attempted for
the first time. Learning these new techniques involves work, but there should be
support for overcoming the learning curve through formal training. In addition,
there should be a period of time for productivity improvement to be
demonstrated in a non-production environment.

More importantly, end user and developer interactions have not been
formalized much beyond the traditional waterfall life cycle model. Stephens and
Bates [Stephens90] described the end user and developer interactions involving
the use of interface and functional prototypes. These types of investigations need
to be integrated within process models in order tO provide an explicit statement
of expectations.

5.1.3. Middle Level Management

Middle level management has sometimes had this new technology thrust
onto a project. Unfortunately, when faced with schedule slippage, the project
manager is more likely to scrap the advanced technology, in favor of what has
worked well in the past. Mayhew and Dearnley [Mayhew90] discuss the need for
educating all participants and controlling the process.

5.1.4 Quick-Fix Approach

Finally, the technology transfer problem is compounded by a lack of
resources and total commitment by upper level management to invest in the
technology transfer process at a sufficient level to ensure success. Assuming a
quick fix solution to the software problem has not been the answer with this
technology.

5.2 Approaches to Technology Transfer

There are several approaches to technology transfer, five of which are
addressed below before providing a proposed approach. These approaches
include the market, standards, edict, guerrillas, and education. Each of these
approaches works with varying degrees of success at technology transfer.

5.2.1 Market Driven

The market driven approach is one of the most visible and proven
approaches to technology transfer. The competitive nature of software
development implies that word spreads in the human networking of software
developers. This approach is typically rapid for technology transfer. However,
the approach can be hampered if the learning curve is not addressed adequately

by technique developers and those acquiring the techniques.

5.2.2 Government/Corporate Standards

Government and corporate standards are also one of the most visible and
proven approaches to technology transfer. However, the development of
standards are lengthy and lock onto a technology after maturity. Perhaps the
most significant gain in requirements and specification technology transfer can
occur in much the same manner that the Ada programming and environments
was introduced to the software engineering community. A good example in place
now is the requirements management aspect of the SEI process assessment for
level 2. Some problems have been identified with requirements specification
under DOD-STD-2167A, which should be explored further [Walter91a].

5.2.3 Edict/Fiat Directed

In lieu of more formal government and corporate standards, the edict or
fiat driven approach is on a smaller scale, but of course could also be driven by
the market or standards. The edict approach requires much less time than the
market or standard driven approaches. However, the problems associated with
the market driven approach can also occur in the edict directed approach.

5.2.4 Guerrilla Warfare

One approach to technology transfer that is more sporadic than the
previous approaches is when new technology is learned by an individual (or
individuals on a project) and then applied as a means to improve productivity and
reliability. This approach is not desirable due to the potential for a lack of a
management perspective on the introduction of the technology. However, when
there is encouragement and a cooperative approach to introducing new
technology, this approach can be quite effective.

5.2.5 Software Engineering Education

Formalizing the previous approach will occur through incorporation of
software engineering education model curricula in graduate software engineering
programs. Recently, DARPA announced plans to support the development of
pilot undergraduate software engineering programs. These programs will create
an opportunity to migrate some of the current graduate level software
engineering concepts into the undergraduate curriculum. An opportunity would
also be created for advancement of a theoretical foundation for the graduate level
courses. Software requirements and specification concepts incorporated within
undergraduate software engineering degree programs would soon be reflected in
the industry. This approach is in much the same manner that UNIX was
introduced within undergraduate computer science degree programs and later
within industry.

5.3 Reverse Engineering

As mentioned earlier, the significant investment in large-scale software
systems has been an impediment to the introduction of requirement engineering
techniques. Reverse engineering is one area in which cooperation can be
achieved to introduce requirements engineering. The remainder of this section
addresses the problem and provides a solution.

5.3.1 Maintainers Hampering Developers and Vice Versa

In many cases over the system lifetime, there is the myth of maintainers
using the developer techniques and tools. This situation is further complicated
where there is a separation of maintenance and development from the standpoint
of research. Lack of an apprenticeship approach with senior software engineers
for Junior software engineers results in maintenance in isolation as the case for
many new personnel. Finally, a lack of tool integration further complicates the
situation.

5.3.2 Feedback and Feedforward

Early software reuse [Karakostas89] is viewed as one of the most important
areas for increasing productivity. A comprehensive approach is needed where
maintainers and developers work together. This approach needs forward
engineering and reverse engineering to cooperate.

Forward engineering is the traditional process of moving from high level
abstractions to physical implementation. Reverse engineering is a process of
analyzing a subject system to identify and create. The identification part of
reverse engineering involves identifying system components and their
relationships. Based on the identification work, representations of the system are
created in another form or at a higher level of abstraction.

5.3.3 Advanced Library Systems

Advanced library systems of reusable components and the guidance on how
to apply reusability can facilitate software development and maintenance. In
many cases, the lack of these library systems has been the source of developer
frustration when advertised productivity gains are not achieved relatively soon.
These concepts can be applied now with existing technology. An area of future
research described later expands this theme across application domains.

5.4 Case Studies

A major part of the detailed analyses in the repository described in Section
4 should include the application of the techniques on a wide variety of problems
that have appeared in the open literature. Case studies are used extensively in
other engineering, scientific, and business settings. The field of software
engineering does not have a sufficient base of case studies that includes both
successes and failures. The software engineering field does not have a standard

for reporting case studies. One problem for the software engineering field is that
in many case studies, the technology developers report only on successful
applications of the technology.

Four problem statements were a part of the Call for Papers for the Fourth
International Workshop on Software Specification and Design (IWSSD) held in
l987. These problems were from different application domains. Authors
submitting papers for this workshop were required to provide a solution to one
of the four problem statements using the technique described in the manuscript.
The set of four problems included a home heating system, library database, text
reformatter, and a lift (elevator) controller.

Jeannette Wing noted that twelve papers in the Fourth IWSSD proceedings
had developed solutions to the library problem [Wing99]. She pursued detailed
analyses of the twelve solutions under support from IBM, DARPA, and NSF.
Another information system problem [Urban85] was derived from an existing
system to analyze the Descartes specification language. For another existing
system, a rapid prototyping technique was used to develop the undo support in
GNU Emacs [Yang90]. On a smaller scale, the telegram problem has been used
extensively for specification, design, and programming techniques [Urban90]. A
payroll problem was described [Fraser91] to demonstrate the use of structured
analysis and VDM. An estimating system for the metal-finishing industry was
used for demonstrating the advantages of prototyping and identification of
additional research questions [Stephens90]. The Sorcerer's Apprentice Problem,
which has impossible semantic rules, was used to promote the techniques that use
state machines as the underlying model [Jorgensen86].

There are several non-trivial real-time applications that have appeared in
the open literature. The cruise control problem has become a commonly used
technique for the demonstration of real-time features in requirements and
specification techniques [Smith88]. A workcell architecture for computer
integrated manufacturing [Biemans86] was formulated to demonstrate the
applicability of LOTOS. AFFIRM was applied to an alternating bit protocol
problem [Sunshine82]. The Gist operational specification was applied in the
development of a package router for a network [Balzer83]. A non-trivial Navy
communications system, SCP, was used for an abstract requirements specification
technique [Heitmeyer83].

The command, control, communications, and intelligence (C3I) application
domain was addressed in two case studies for demonstrating two different
techniques. One of the C3I case studies presented was an example of technique
developer reported success. The recent case study of a C3I prototype was
reported [Luqi92] by the developer. The C3I prototype was developed with the
use of the Prototype System Description Language (PSDL) [Luqi88a] and
Computer-Aided Prototyping System (CAPS) [Luqi88b]. The second case study
represents a report of efforts by a group other than the original developers. The
second case study [Scheffer85] is also a C3I system and uses some mature
technology, SREM. The repository should maintain solutions produced by both

technique developers and others.

These problems should form the basis for developing a matrix of
requirements and specification solutions in all the techniques, wherever possible.
The application development should be coupled with the detailed analyses such
that domain issues are taken into consideration during technique selection. The
applications developed to fill the matrix of solutions should follow the same case
study format. This application development with a fixed reporting format will
provide a significant base of case studies.

This section addressed software engineering technology transfer problems
and an approach to speeding up the process for requirements and specification
technology. The next section includes proposed future research and a report
summary.

6. RECOMMENDATIONS AND SUMMARY

Four areas for future research are outlined to extend the prototyping
technology. These research areas were identified as a result of technique analysis
and other emerging technologies. The technique analysis identified the
incorporation of multiple models within recently developed techniques. Two
emerging technologies from fields other than software engineering were
identified as appearing to have potential for incorporation within prototyping
technology. The report concludes with a summary section of the research
findings.

6.1 Future Research

As mentioned earlier, software prototyping and requirements engineering
are entering a new generation of techniques and tools. The remainder of this
section identifies four primary areas for future research in support of software
prototyping and requirements engineering. Two of the research areas are
directly related to technique and tool advancement. Two of the research areas
depend on advances in other areas.

The first area of future research involves a recognition of the maturity of
existing techniques to warrant technique unification. The second area is based
again on the maturity of existing techniques to incorporate the advances in
computer-supported cooperative work. The third area addresses adding further
dimension to the understanding of end user needs through multimedia and
scientific visualization. The last area draws on integrating existing work to
perform domain analysis

6.1.1 Technique Unification

There are two directions with regards to the next generation of software
requirements and specification techniques. One direction is towards the
unification of techniques into a single technique that will essentially be a "do all"

for everybody. The other direction of research is towards continued development
of new techniques, but the introduction of a backplane or spine through which a
variety of techniques could be used to develop a software system. One common
theme of both research directions is in efficiency. This efficiency theme cuts
across optimizing development effort, ease of user understanding, and effective
support software. Either approach can lead toward the development of a theory
of software requirements and specifications. This theory of requirements and
specification will be developed as was the case for theories within data
engineering, operating systems, and program testing.

6.1.2 Computer-Supported Cooperative Work

The interactions between end user, development team. and management
could be improved by capitalizing on advances that have been made in the area of
computer-supported cooperative work. This area has two directions that need to
be addressed with regards to software engineering. The first direction is the
behavioral aspects of human interactions during the software life cycle. A user
interface to foster cooperation among all participants in software development
and maintenance is needed. The second direction must address the underlying
support system issues for the cooperative interface.

6.1.3 Multimedia and Scientific Visualization

Another area of research involves tapping the potential for emerging
technologies that are being used in improving understanding of other areas of
complexity. The introduction of audio and video technologies will improve the
interaction between end users and developers. One aspect of the interaction
involves providing the end users with a more realistic representation of the
objects that are part of the software systems. Another aspect of the interaction
involves exploiting the technologies in ways to assist the software developer and
manager in managing the complexity of software systems.

6.1.4 Domain Analysis

A final area of future research that has significant cost and reliability
implications is domain analysis. Other engineering disciplines work with
standard components that can be pulled off the shelf. Software engineering is
still in an infancy period with regard to standard components, other than at a
gross system level.

Research in domain analysis, such as the Rome Laboratory-supported
Knowledge-Based Requirements Assistant, should focus the capability to allow
for identification and development of standard components within application
areas. In addition to component identification/development, the means for
component selection and integration would need to be developed. These
component aspects will have significant impacts on software productivity.
However, more importantly the software components would be validated before
becoming available for general use and reliability thresholds used as a means for

determining availability. Applying the integration techniques then becomes the
critical issue with regards to reliability. As already demonstrated, software
prototyping and requirements engineering are crucial technologies for success in
this area.

 6.2 Report Summary

Software prototyping and requirements engineering were addressed in this
report as a means for decreasing software cost and improving software quality.
The report included a discussion on several approaches to prototyping as a means
for improving software development. Software requirements engineering was
addressed as an approach to prototyping that can provide the most significant
improvement in software development. Summary analysis of twenty
requirements engineering techniques and tools were included to provide a broad
perspective on the field.

Unfortunately, this technology has not had a significant impact on industry
due to the infancy of the area as a research topic. However, the technology has
matured to the point that the first generation technology has made a foothold in
the state-of-the-practice. Further, the next generation of research efforts in
requirements engineering show promise for significant impact on the software
engineering discipline.

The goal of eliminating the design and coding phases of the software life
cycle is feasible now, but at the price of execution efficiency. This elimination
goal will become closer to being achieved through the remainder of this century.
 .

7. REFERENCES

[Alavi91] M. Alavi and J C. Wetherbe, "Mixing Prototyping and Data Modeling
for Information- System Design,” IEEE Software, Vol. 8. No. 4, May 1991, pp
86-92.

[Alexander89] H. Alexander and B. Potter, “Case Study: The Use of Formal
Specification and Rapid Prototyping To Establish Product Feasibility,"
Information and Software Technology, Vol. 29, No. 7, September 1989, pp. 388-
394.

[Alford77] M Alford, "A Requirements Engineering Methodology for Real-Time
Processing Requirements," IEEE Transactions on Software Engineering, Vol.
SE-3, No. 1, January 1977, pp. 60-69.

[Alford85] M. Alford, "SREM at the Age of Eight; The Distributed Computing
Design System," Computer, Vol. 18, No. 4, April 1985, pp. 36-46.

[Ambler77] A. Ambler, D. I. Good. J. C. Browne, W. F. Burger, R. M. Cohen,

C. G. Hoch, and R. E. Wells, "GYPSY: A Language for Specification and
Implementation of Verifiable Programs." ACM SIGPLAN Notices, Vol. 12, No.
3, 1977, pp. 1-10.

[ANSI84] ANSI/IEEE Std. 830-1984: IEEE Guide to Software Requirements
Specifications, in System and Software Requirements Engineering, Edited by M.
Dorfman and R. Thayer, IEEE Computer Society Press Tutorial, Order No
1921, 1990, pp. 170-192,

[Archer90] M. Archer, D. Fincke, and K. Levitt, "A Template for Rapid
Prototyping of Operating Systems," Proceedings of the First lnternational
Workshop on Rapid System Prototyping, Research Triangle Park, North
Carolina, June 4-7, 1990, pp. 119-127.

[Archibald83] J. L. Archibald, B. M. Leavenworth, and L. R. Power, "Abstract
Design and Program Translator: New Tools for Software Design," IBM Systems
Journal, Vol. 22, No. 3, 1983, pp. 170-187.

[Auernheimer86] B. Auernheimer and R. A. Kemmerer, "RT-ASLAN: A
Specification Language for Real-Time Systems," IEEE Transactions on Software
Engineering, Vol. SE-12, No. 9, September 1986, pp. 879-889.

[Babcock89] J. Babcock, S. Gerhart, K. Greene, and T. Ralston, SpecTra: A
Formal Methods Environment, MCC Technical Report Number ACI-ILO-STP-
324-89, August 1989, 15 pp.

[Bailin89] S. C. Bailin, "An Object-Oriented Requirements Specification
Method," Communications of the ACM, Vol. 32, No. 5, May 1989, pp. 608-623.

[Baldassari91] M. Baldassari, G. Bruno, and A. Castella "PROTOB: An Object-
Or,iented CASE Tool for Modelling and Prototyping Distributed Systems,"
Software Practice and Experience, Vol. 21, No. 8, August 1991, pp. 823-844

[Balzer83] R. M. Balzer, D. Cohen, M. S. Feather, N. M. Goldman, W. Swartout,
and D. S. Wile, "Operational Specification as the Basis for Specification
Validation," in Theory and Practice of Software Technology, North-Holland
Publishing Company, 1983, pp. 21-49.

[Beichter84] F. W. Beichter. O. Herzog, and H. Petzsch. "SIAN-4 - A Software
Specification and Design Language,"IEEE Transactions on Software
Engineering, Vol. SE-10, No. 2, March 1984, pp. 155-162.

[Belady92] L. A. Belady, "The 7 Years of MCC's Innovative Software
Technology Program," American Programmer, Vol. 15, No. 1, January 1992,
pp. 10-15.

[Belkhouche86] B. Belkhouche and J. E. Urban. "Direct Implementation of
Abstract Data Types from Abstract Specifications", IEEE Transactions on

Software Engineering,Vol. 12, No. 5, May 1986, pp. 649-661.

[Bell77] T. E. Bell, D. C. Bixler, and M. E. Dyer, "An Extendable Approach to
Computer-Aided Software Requirements Engineering," IEEE Transactions on
Software Engineering, Vol. SE-3, No. 1, January 1977, pp. 49-60.

[Bera90] R. K. Bera "Setting Software Requirements: Scenario for Future
Fighters," Information and Software Technology, Vol. 32, No. 9. October 1990,
pp. 253-257.

[Berzins90] V. Berzins and Luqi, "An Introduction to the Specification Language
Spec," IEEE Software, Vol. 7, No 2, March 1990, pp. 74-84.

[Biemans86] F. Biemans and P. Blonk, "On the Formal Specification and
Verification of CIM Architectures Using LOTOS," Computers in Industry, Vol.
7, pp. 491-504.

[Biewald79] J. Biewald, P. Goehner, R. Lauber, and H. Schelling, "EPOS--A
Specification and Design Technique for Computer Controlled Real-Time
Automation Systems," Proceedings of the 4th International Conference on
Software Engineering, Munich, Germany, September 1979, pp. 245-250.

[Boehm84] B. W. Boehm, T. E. Gray, and T. Seewaldt, "Prototyping Versus
Specifying: A Multiproject Experiment," IEEE Transactions on Software
Engineering, Vol. 10, No. 3, May 1984, pp. 290-302.

[Bruno86] G. Bruno and G. Marchetto, "Process-Translatable Petri Nets for the
Rapid Prototyping of Process Control Systems," IEEE Transactions on Software
Engineering, Vol. 12, No. 2, February 1986, pp. 346 357.

[Bryant89] B. R. Bryant and A. Pan, "Rapid Prototyping of Programming
Language Semantics Using Prolog," Proceedings of the 13th International
Computer Software & Applications Conference, Orlando, Florida, IEEE
Computer Society Press, September 1989, pp. 439-446.

[Budkowski87] S. Budkowski and P. Dembinski, "An Introduction to Estelle: A
Specification Language for Distributed Systems," Computer Networks and ISDN
Systems, Vol. 14, 1987, pp. 3-23.

 [Cardenas-Garcia91] S. Cardenas-Garcia and M. V Zelkowitz. "A Management
Tool for Evaluanon of Software Designs," IEEE Transactions on Software
Engineering, Vol. 17, No. 9, September 1991, pp. 961-971.

[Carey90] J. M. Carey, Prototyping: Alternative Systems Development
Methodology," Information and Software Technology, Vol. 32. No. 2, March
1990, pp. 119-126.

[Catchpole86] P. Catchpole. "Requirements for a Successful Methodology in

Information Systems Design," Data Processing, Vol. 28, No. 4, May 1986, pp.
207-210.

[Ceri88] S. Ceri, S. Crespi-Reghizzi, A. Di Maio, and L. A. Lavazza, "Software
Prototyping by Relational Techniques: Expenences with Program Construction
Systems," IEEE Transactions on Software Engineering, Vol. 14, No. 11,
November 1988, pp. 1597-1609.

[ChenJ89] J. Chen, J. Wang, and J. Kuo, "An Integrated Framework for Software
Prototyping," Proceedings of the 13th International Computer Software &
Applications Conference, Orlando. Flonda. IEEE Computer Society Press,
September 1989, pp. 463-470.

[ChenP90] P. Chen. "Entity-Relationship Approach to Data Modeling," in System
and Software Requirements Engineering, Edited by M. Dorfman and R. Thayer,
IEEE Computer Society Press Tutorial, Order No. 1921, 1990, pp. 238-243.

[Chen88P-M] P.-M. Chen, and C.-R. Chou, "The Requirement Model in a
Knowledge-Based Rapid Prototyping System," Proceedings of the 12th Annual
International Computer Software & Applications Conference, Chicago, Illinois,
IEEE Computer Society Press, October 1988, pp. 418-426.

[Cheng82] L. L. Cheng, M. L. Soffa, and Y. H. Yang, "Simulation of an I/O
Driven Requirements Language," Proceedings of the 6th International Computer
Software & Applications Conference, Chicago, Illinois, November 1982, pp.
433-441.

[Cieslak89] R. Cieslak, A. Fawaz, S. Sachs. P. Varaiya, J. Walrand, and A. Li,
"The Programmable Network Prototyping System," Computer, Vol. 22, No. 5,
May 1989, pp. 6776.

[Clapp87] J. A. Clapp, "Rapid Prototyping for Risk Management," Proceedings
of the 11th International Computer Software & Applications Conference, Tokyo,
Japan, IEEE Computer Society Press, October 1987, pp. 17-22.

[Coad90] P. Coad and E. Yourdon, " Object-Oriented Analysis," in System and
Software Requirements Engineering, Edited by M. Dorfman and R. Thayer,
IEEE Computer Society Press Tutorial, Order No 1921, 1990, pp. 272-289.

[Coomber90] C. J. Coomber and R. E. Childs, "A Graphical Tool for the
Prototyping of Real- Time Systems," ACM SIGSOFT Software Engineering
Notes, Vol. 15, No. 2, April 1990, pp. 70- 82.

[Cordy91] J. R. Cordy, E. Promislow, and C. D. Halpern-Hamu, "TXL: A Rapid
Prototyping System for Programming Language Dialects,"Computer Languages,
Vol. 16, No. 1, January 1991, pp. 97-107.

[DavisA82], A. M. Davis. "Rapid Prototyping Using Executable Requirements

Specifications.'' ACM SIGSOFT Software Engineering Notes, Vol. 7, No. 5.
December 1982, pp. 39-42.

[DavisA90] A. M. Davis. "The Analysis and Specification of Systems and
Software Requirements," in System and Software Requirements Engineering,
Edited by M. Dorfman and R. Thayer, IEEE Computer Society Press Tutorial,
Order No 1921, 1990, pp. 119-144.

[DavisA91] A. M. Davis and P. A. Freeman, "Guest Editor's Introduction-
Requirements Engineering," IEEE Transactions on Software Engineering, Vol.
17, No. 3, March 1991, pp. 210- 211.

[DavisC77] C. G. Davis and C. R. Vick, "The Software Development System,"
IEEE Transactions on Software Engineering, Vol. SE-3, No. 1, January 1977,
pp. 69-84.

[Degl'lnnocenti90] M. Degl'Innocenti, G. L. Ferrari, G. Pacini, and F. Turini,
"RSF: A Formalism for Executable Requirements Specifications," IEEE
Transactions on Software Engineering, Vol. 16, No. 11, November 1990, pp.
1235-1245.

[Diaz-Gonalez87a] J. P. Diaz-Gonzalez and J. E. Urban, "ENVISAGER: A
Visual, Object-oriented Specification Environment for Real-Time Systems,"
Proceedings of the 4th International Workshop on Software Specification and
Design, Monterey, California, EKE Computer Society Press, April 1987, pp. 13-
20.

[Diaz-Gonzalez87b] J. P. Diaz-Gonzalez, The Requirements Engineering of Real-
Time Systems: A Temporal Logic Approach, Ph.D. Dissertation, The Center for
Advanced Computer Studies, University of Southwestern Louisiana, Lafayette,
Louisiana, December 1987, 166 pp.

[Diaz-Gonzalez91] J. P. Diaz-Gonzalez and J. E. Urban, "Language Aspects of
Envisager: An Object-Oriented Environment for the Specification of Real-Time
Systems," Computer Languages, Vol. 16, No. 1, January 1991, pp. 19-37.

[Doberkat87] E. E. Doberkat and U. Gutenbeil, "SETL To Ada - Tree
Transformations Applied," Information and Software Technology, Vol. 29, No.
10, December 1987, pp. 548557.

[Dorfman84] M. Dorfman and R. F. Flynn, "Arts - An Automated Requirements
Traceability System,” Journal of Systems and Software, Vol. 4, No. 1, April
1984, pp. 63-74.

[Duke89] E. L. Duke, R. W. Brumbaugh, and J. D. Disbrow, "A Rapid
Prototyping Facility for Flight Research in Advanced Systems Concepts,"
Computer, Vol. 22, No. 5, May 1989, pp. 61-66.

[Easterby87] R. Easterby, "Trillium: An Interface Design Prototyping Tool,"
Information and Software Technology, Vol. 29, No. 4, May 1987, pp. 207-213.

[Edmonds81] L. S. Edmonds and J. E. Uban. "A Method for Evaluating Front-
End Life Cycle Tools," Proceedings of the First International Conference on
Computers and Applications, Beijing, China, June 20-22, 1984, pp. 324-331.

[Fraser91] M. D. Fraser. K. Kumar. and V. K. Vaishnavi, "Informal and Formal
Requirements Specification Languages: Bridging the Gap,” IEEE Transactions on
Software Engineering, Vol. 17, No. 5, May 1991. pp. 454-466.

[Futatsugi85] K. Futatsugi, J. A. Goguen, I. P. Jouannaud, and J. Meseguer,
"Principles of OBJ2," Conference Record of the Twelfth Annual ACM
Symposium on Principles of Programming Languages, New Orleans, Louisiana.
January 1985, pp. 52-66.

[Goedicke86] M. Goedicke. "The Use of Formal Requirements Specifications in
EDE in a Software Development Environment," Proceedings of the 10th
International Computer Software & Applications Conference, Chicago, Illinois,
IEEE Computer Society Press, October 1986, pp. 190-196.

[GoguenJ9] J. A. Goguen and I. J. Tardo, "An introduction to OBJ: A Language
for Writing and Testing Formal Algebraic Program Specifications," Proceedings
of the Conference on Specifications of Reliable Software, 1979, pp. 170-189.

[Goldsack91] S. J. Goldsack and A. C. W. Finkelstein, "Requirements
Engineering for RealTime Systems," Software Engineering Journal, Vol. 6, No.
3, May 1991, pp. 101-115.

[Gomaa84] H. Gomaa, "A Software Design Method for Real-Time Systems,"
Communications of the ACM, Vol. 27, No. 9, September 1984, pp. 938-949.

[Gupta89] R. Gupta, W. H. Cheng, R. Gupta, I. Hardonag, and M. A. Breuer,
"An Object-oriented VLSI CAD Framework," Computer, Vol. 22, No. 5, May
1989, pp. 28-37.

[Guttag85] J. V. Guttag, J. J. Horning, and J. M. Wing, "The Larch Family of
Languages," IEEE Software, Vol. 2, No. 5, September 1985, pp. 24-26.

[Hallmann88] M. Hallmann, "Incorporating Transactions in a Requirement
Engineering Method," Proceedings of the 12th Annual International Computer
Software & Applications Conference, Chicago, Illinois, IEEE Computer Society,
October 1988, pp. 121-126.

[Hamilton90] M. H. Hamilton and W. R. Hackler, "001: A Rapid Development
Approach for Rapid Prototyping Based on a System That Supports Its Own Life
Cycle," Proceedings of the First International Workshop on Rapid System
Prototyping, Research Triangle Park, North Carolina, June 1990, pp. 46-62.

[Harbert90] A. Harbert, W. Lively, and S. Sheppard, "A Graphical Specification
System for User-Interface Design," IEEE Software, Vol. 7, No. 4, July 1990, pp.
12-20.

[Harel90] D. Harel, H. Lachover, A. Naarnad, A. Pnueli, M. Poti, R. Sherman,
A. ShtullTaunng, and M. Trakhtenbrot, "STATEMATE: A Working
Environment for the Development of Complex Reactive Systems." IEEE
Transactions on Software Engineering, Vol. 16, No. 4, April 1990, pp. 403-414.

[Heitmeyer83] C. L. Heitmeyer and J. D. McLean. "Abstract Requirements
Specification: New Approach and Its Application." IEEE Transactions on
Software Engineering, Vol. SE-9, No. 5, September 1983, pp. 580-589.

[Helmbold88] D. P. Helmbold. The Meaning of TSL: An Abstract
Implementation of TSL-1, Stanford University Computer Systems Laboratory
Technical Report No. CSL-TR-88-353, March 1988, 37 pp.

[Hemenway82] K. Hemenway and L. X. McCusker, "Prototyping and Evaluating
a User Interface," Proceedings of the 6th International Computer Software &
Applications Conference, Chicago, Illinois, November 1982, pp. 175-180.

[Henderson86] P. Henderson, "Functional Programming, Formal Specification,
and Rapid Prototyping," IEEE Transactions on Software Engineering, Vol. 12.
No. 2, February 1986, pp. 241-250.

[Herndon88] R. M. Herndon and V. A. Berzms, "The Realizable Benefits of a
Language Prototyping Language," IEEE Transactions on Software Engineering,
Vol. 14, No. 6, June 1988, pp. 803-809.

[Hoffman88] D. Hoffman and R. Snodgrass, "Trace Specifications: Methodology
and Models," IEEE Transactions on Software Engineering, Vol. 14, No. 9,
September 1988, pp. 1243-1252.

[Hoffman89] D. Hoffman, "Practical Interface Specification," Software Practice
and Experience, Vol. 19, No. 2, February 1989, pp. 127-148.

[Holbrook90] Capt. H. Holbrook, "A Scenario-Based Methodology for
Conducting Requirements Elicitation," ACM SIGSOFT Software Engineering
Notes, Vol. 15, No. 1, January 1990, pp. 95- 104.

[Hooper89] J. W. Hooper, "Language Features for Prototyping and Simulation
Support of the Software Life Cycle," Computer Languages, Vol. 14, No. 2,
February 1989, pp. 83-92.

[Hsia86] P. Hsia, A. T. Yaung, and S. H. Jiam, "Requirements Clustering for
Incremental Construction of Software Systems," Proceedings of the 10th
International Computer Software & Applications Conference, Chicago, Illinois,

IEEE Computer Society Press, October 1986, pp. 204- 211.

[i-Logix, Inc.90] i-Logix, Inc., The STATEMATE Approach to Complex
Systems, i-Logix Report, Burlington, Massachusetts, 1990.

[Ince87] D. C. Ince and S. Hekmatpour, "Software Prototyping - Progress and
Prospects," Information and Software Technology, Vol. 29, No. l,
January/February 1987, pp. 8-14.

[Jackson85] M. I. Jackson, "Developing Ada Programs Using the Vienna
Development Method (VDM)," Software Practice and Experience, Vol. 15, No.
3, March 1985, pp. 305-318.

[Jaffe91] M. S. Jaffe, N. G. Leveson, M. P. E. Heimdahl, and B. E. Melhart,
"Software Requirements Analysis for Real-Time Process-Control Systems,”
IEEE Transactions on Software Engineering, Vol. 17, No. 3. March 1991. pp.
241-258.

[Jarvinen90] H. M. Jarvinen, R. Kurki-Suonio. M. Sakkinen, and K. Systa,
"Object-Oriented Specification of Reactive Systems," Proceedings of the 12th
International Conference on Software Engineering, Nice, France, March 1990,
IEEE Computer Society Press, pp. 63-71.

[Jordan89] P. W. Jordan. K. S. Keller, R. W. Tucker, and D. Vogel, "Software
Storming: Combining Rapid Prototyping and Knowledge Engineering,"
Computer, Vol. 22, No. 5, May 1989, pp. 39-48.

[Jorgensen86] P. Jorgensen, "Complete Specifications and the Sorcerer's
Apprentice Problem," Proceedings of the 10th International Computer Software
& Applications Conference, Chicago, Illinois, IEEE Computer Society Press,
October 1986, pp. 197-204.

[Karakostas89] V. Karakostas, "Requirements for CASE Tools in Early Software
Reuse," ACM SIGSOFT Software Engineering, Vol. 14, No. 2, April 1989, pp.
39-41.

[Kato87] J. Kato and Y. Morisawa, "Direct Execution of a JSD Specification,"
Proceedings of the 11th Computer Software & Applications Conference, Tokyo,
Japan, IEEE Computer Society Press, October 1987, pp. 30-37.

[Knoll89] H. D. Knoll and W. Suk, "A Graphic Language for Business
Application Systems to Improve Communication Concerning Requirements
Specification with the User," ACM SIGSOFT Software Engineering Notes, Vol.
14, No. 6, October 1989, pp. 58-60.

[Krista89] R. Krista and I. Rozman, "A Computer Aided Prototyping
Methodology," ACM SIGSOFT Software Engineering Notes, Vol. 14, No. 6,
October 1989, pp. 68-72.

[Kuo87] J. H. Kuo and H.-C. Tu, "Prototyping a Software Information Base for
Software Engineering Environments," Proceedings of the 11th International
Computer Software & Applications Conference, Tokyo, Japan, IEEE Computer
Society Press, October 1987, pp. 3844.

[Lea90] R.-J. Lea and C.-G. Chung, "Rapid Prototyping from Structured
Analysis: Executable Specification Approach," Information and Software
Technology, Vol. 32, No. 9, November 1990, pp. 589-597.

[Lee85] S. Lee, "On Executable Models for Rule-Based Prototyping,"
Proceedings of the 8th International Conference on Software Engineering, 1985,
London, England. pp. 210-215.

[Leszczylowski89] J. Leszczylowski and J. M. Bieman, "Prosper: A Language for
Specification by Prototyping," Computer Languages, Vol. 14, No. 3, Apnl 1989,
pp. 165-180.

[Lewis89] T. G. Lewis, F. Handloser III, S. Bose, and S. Yang, "Prototypes From
Standard User interface Management Systems," Computer, Vol. 22, No. 5, May
1989, pp. 51-60.

[Lintulampi90] R. Lintulampi and P Pulli, Graphics Based Prototyping of Real-
Time Systems." Proceedings of the First International Workshop on Rapid
System Prototyping, Research Triangle Park, North Carolina, June 1990, pp.
128-137

[Lor91] K.-W E. Lor, "Operational Definitions for System Requirements as the
Basis of Design Automation." Software Practice and Experience, Vol. 21, No.
10, October 1991, pp. 1103-1124.

[Loucopoulos89] P. Loucopoulos and R. E. M. Champion, "Knowledge-Based
Support for Requirements Engineering," Information and Software Technology,
Vol. 31, No. 3, April 1989, pp. 124-135.

[Luckham85] D. C. Luckham and F. W. von Henke, " An Overview of Anna, A
Specification Language for Ada," IEEE Software. Vol. 2, No. 2, March 1985,
pp. 9-22.

[Luckham87] D. C. Luckham. R. Neff, D. S. Rosenblum. "An Environment for
Ada Software Development Based on Formal Specification: Status and
Development Plan," ACM SIGADA Ada Letters, Vol. ii, No. 3, March 1987, pp.
94-106.

[Ludewig83] J. Ludewig, "ESPRESO - A System for Process Control Software
Specification," IEEE Transactions on Software Engineering, Vol. SE-9, No. 4,
July 1983, pp. 427-436.

[Ludewig85] J. Ludewig, M. Glinz, H. Huser, G. Matheis, H. Matheis, and M. F.
Schmidt, "SPADES - A Specification and Design System and Its Graphical
Interface," Proceedings of the 8th International Conference on Software
Engineering, August 1985, pp. 83-89.

[Luqi88a] Luqi and M. Ketabchi. "A Computer-Aided Prototyping System,"
IEEE Software, Vol. 5, No. 2, March 1988, pp. 66-72.

[Luqi88b] Luqi and V. Berzins, "Rapidly Prototyping Real-Time Systems," IEEE
Software, Vol. 2, No. 5, September 1988, pp. 25-36.

[Luqi88c] Luqi, V. Berzins, and R. Yeh, "A Prototyping Language for Real-
Time Software," IEEE Transactions on Software Engineering, Vol. 14, No 10,
October 1988, pp. 1409-1423.

[Luqi88d] Luqi, "Knowledge-Based Support for Rapid Software Prototyping,"
IEEE Expert, Vol. 3, No. 4, December 1988, pp. 9-18.

[Luqi89a] Luqi, "Software Evolution Through Rapid Prototyping,” Computer,
Vol. 22, No. 5, May 1989, pp. 13-25.

[Luqi89b] Luqi and Y. J. Lee, "Interactive Control of Prototyping Process,"
Proceedings of the 13th International Computer Software & Applications
Conference, Orlando, Florida, IEEE Computer Society Press, September 1989,
pp. 447-454.

[Luqi90] Luqi, P. D. Barnes, and M. Zyda, "Graphical Tool for Computer-Aided
Prototyping," Information and Software Technology, Vol. 32, No. 3, April 1990,
pp. 199-206.

[Luqi92] Luqi, "Computer-Aided Prototyping for a Command-and-Control
System Using CAPS," IEEE Software, Vol. 9, No. 1, January 1992, pp. 56-67.

[Mayhew89] P. I. Mayhew, C. I. Worsley, and P. A. Dearnley, "Control of
Software Prototyping Process: Change Classification Approach," Information and
Software Technology, Vol. 31, No. 2, March 1989, pp. 59-67.

[Mayhew90] P. J. Mayhew and P. A. Dearnley, "Organization and Management
of Systems Prototyping," Information and Software Technology, Vol. 32, No. 4,
May 1990, pp. 245-252.

[Michaelson88] G. Michaelson, "Interpreter Prototypes From Language
Definition Style Specifications," Information and Software Technology, Vol. 30,
No. 1, January/February 1988, pp. 23-31.

[Misra88] S. K. Misra and P. J. Jalics, "Third-Generation Versus Fourth-
Generation Software Development," IEEE Software, Vol. 5, No. 4, July 1988,
pp. 8-14.

[Mosse90] D. Mosse, O. Gudmundsson, and A. K. Agrawala, "Prototyping Real
Time Operating Systems: A Case Study," Proceedings of the First International
Workshop on Rapid System Prototyping, Research Triangle Park, North
Carolina, June 1990, pp. 144-154.

[Musser80] D. R. Musser, "Abstract Data Type Specification in the AFFIRM
System," IEEE Transactions on Software Engineering, SE-6, No. 1, January
1980, pp. 24-32.

[Norris90] M. Norris, "Z (A Formal Specification Method)," in System and
Software Requirements Engineering, Edited by M. Dorfman and R. Thayer,
IEEE Computer Society Press Tutorial, Order No 1921, 1990, pp. 345-369.

[Payton82] T. Payton, S. Keller, J. Perkins, S. Rowan, and S. Mardinly, "SSAGS:
A Syntax and Semantics Analysis and Generation System," Proceedings of the 6th
International Computer Software & Applications Conference, Chicago, Illinois,
November 1982, pp. 424-432.

[Prizant86] A. Prizant, "Prototyping Counterproductive?," Data Processing, Vol.
28, No. 7, September 1986, pp. 379.

[Purtilo91] J. M. Purtilo and P. Jalote, "An Environment for Prototyping
Distributed Applications,” Computer Languages, Vol. 16, No. 3/4, 1991, pp.
197-207.

[Ratcliff88] B. Ratcliff, "Early and Not-So-Early Prototyping - Rationale and
Tool Support," Proceedings of the 12th Annual International Computer Software
& Applications Conference, Chicago, Illinois, IEEE Computer Society Press,
October 1988, pp. 127-134.

[Reubenstein91] H. B. Reubenstein and R. C. Waters, "The Requirements
Apprentice: Automated Assistance for Requirements Acquisition," IEEE
Transactions on Software Engineering, Vol. 17, No. 3, March 1991, pp. 226-
240.

[Rolland83] C. Rolland and G. Benci," An Event-Driven Methodology for
Technical Software Design," Proceedings of Real-Time Systems Symposium,
December 1983, pp. 81-87.

[Roman85] G.-C. Roman, "A Taxonomy of Current Issues in Requirements
Engineering,” Computer, Vol. 18, No. 4, April 1985, pp. 14-21.

[Ross77a] D. T. Ross, "Structured Analysis (SA): A Language for
Communicating Ideas," IEEE Transactions on Software Engineering, Vol. SE-3,
No. 1, January 1977, pp. 16-34.

[Ross77b] D. T. Ross and K. E. Schoman, Jr., "Structured Analysis for

Requirements Definition," IEEE Transactions on Software Engineering, Vol. SE-
3, No. 1, January 1977, pp. 6- 15.

[Rzepka85] W. Rzepka and Y. Ohno, "Guest Editor's Introduction -
Requirements Environments: Software Tools for Modeling User Needs,"
Computer, Vol. 18, No. 4, April 1985, pp. 9-12.

[Scheffer85] P. A. Scheffer, A. H. Stone III, and W. E. Rzepka, "A Case Study of
SREM," Computer, Vol. 18, No. 4, April, 1985, pp. 47-54.

[Schmidt91] H. W. Schmidt, "Prototyping and Analysis of Non-Sequential
Systems Using Predicate-Event Nets," Journal of Systems and Software, Vol. 15,
No. 1, 1991, pp. 43-62.

[Sievert85] G. E. Sievert and T. A. Mizell, "Specification-Based Software
Engineering With TAGS," Computer, Vol. 18, No. 4, April 1985, pp. 56-65.

[Skillicorn89] D. B. Skillicorn and J. I. Glasgow, "Real-Time Specification Using
Lucid," IEEE Transactions on Software Engineering, Vol. 15, No. 2, February
1989, pp. 221-229.

[Slusky87] L. Slusky, "Integrating Software Modelling and Prototyping Tools,"
Information and Software Technology, Vol. 27, No. 7, September 1987, pp. 79-
87.

[Smith88] S. L. Smith and S. L. Gerhart, "STATEMATE and Cruise Control: A
Case Study," Proceedings of the 12th International Computer Software &
Applications Conference, Chicago, Illinois, IEEE Computer Society Press,
October 1988, pp. 49-56.

[Staknis90] M. E. Staknis, "Software Quality Assurance Through Prototyping and
Automated Testing," Information and Software Technology, Vol. 32, No. 1,
January/February 1990, pp. 26- 33.

[Stasko90] J. T. Stasko, "A Practical Animation Language for Software
Development," Proceedings International Conference on Computer Languages,
New Orleans, Louisiana, IEEE Computer Society Press, March 1990, pp. 1-10.

[Stephens90] M. A. Stephens and P. E. Bates, "Requirements Engineering by
Prototyping: Experiences in Development of Estimating System," Information
and Software Technology, Vol. 32, No. 4, May 1990, pp. 253-257.

[Sunshine82] C. A. Sunshine, D. H. Thompson, R. W. Erickson, S. L. Gerhart,
and D. Schwabe, "Specification and Verification or Communication Protocols in
AFFIRM Using State Transition Models," IEEE Transactions on Software
Engineering, Vol. SE-8, No. 5, September 1982, pp. 460-489.

[Tate90a] G. Tate and J. Verner, "Case Study of Risk Management, Incremental

Development, and Evolutionary Prototyping," Information and Software
Technology, Vol. 32, No. 3, April 1990, pp. 207-214.

[Tate90b] G. Tate, "Prototyping: Helping to Build the Right Software,"
Information and Software Technology, Vol. 32, No. 4, May 1990, pp. 237-244.

[Teichroew77] D. Teichroew and E. A. Hershey III, "PSLJPSA: A Computer-
Aided Technique for Structured Documentation and Analysis of Information
Processing Systems," IEEE Transactions on Software Engineering, Vol. SE-3,
No. 1, January 1977, pp. 41 48.

[Terwilliger89] R. B. Terwilliger and R. H. Campbell. " PLEASE: Executable
Specifications for Incremental Software Development." Journal of Systems and
Software, Vol. 10, No. 2, 1989, pp. 97-112.

[Thayer90] R. H. Thayer and M. Dorfman (Eds.), System and Software
Requirements Engineering, IEEE Computer Society Press Tutorial, Order No.
1921, 1990.

[Topping87] P. Topping, J. McInroy, W. Lively, and S. Sheppard, "Express -
Rapid Prototyping and Product Development via Integrated, Knowledge-Based
Executable Specifications," Proceedings of the 1987 Fall Joint Computer
Conference, Dallas, Texas, IEEE Computer Society Press, pp. 3-9.

[Tozer87] J. E. Tozer, "Prototyping as a System Development Methodology:
Opportunities and Pitfalls," Information and Software Technology, Vol. 29, No.
5, June 1987, pp. 265-269.

[Tsai88] J. J. P. Tsai, M. Aoyama, and Y. L. Chang, "Rapid Prototyping Using
FRORL Language," Proceedings of the 12th International Computer Software &
Applications Conference, Chicago, Illinois, IEEE Computer Society Press,
October 1988, pp. 410-417.

[Tsai89] J. J. P. Tsai and T. Weigert, "Exploratory Prototyping Through the Use
of Frames and Production Rules," Proceedings of the 13th International
Computer Software & Applications Conference, Orlando, Florida, IEEE
Computer Society Press, September 1989, PP. 455-462.

[Tsai91] J. J. P. Tsai and T. Weigert, "HCLIE: A Logic-based Requirement
Language for New Software Engineering Paradigms," Software Engineering
Journal, Vol. 6, No. 4, July 1991, pp. 137-151.

[TsaiS-T90] S.-T. Tsai, C.-C. Yang, and C.-C. Lien, "Automated Retrieval of
Consistent Documentation for Rapid Prototyping Systems and Software
Maintenance," Information and Software Technology, Vol. 32, No. 8, October
1990, pp. 521-530.

[Urban77] J. E. Urban. “A Specification Language and Its Processor,” Ph. D.

Dissertation. University or Southwestern Louisiana, December 1977, 179 pp.

[Urban85] S. D. Urban, I. E. Urban, and W. D. Dominick, "Utilizing an
Executable Specification Language for an Information System,'' IEEE
Transactions on Software Engineering, Vol. 11, No. 11, July 1985, pp. 598-605.

[Urban90] J. E. Urban, "The Descartes Specification Language," in System and
Software Requirements Engineering, Edited by M. Dorfman and R. Thayer,
IEEE Computer Society Press Tutorial. Order No 1921, 1990, pp. 331-344.

[van Delft89] A. I. E. van Delft. "Express: Proposal for Uniform Notations,"
Information and Software Technology, Vol. 31, No. 3, April 1989, pp. 143-159.

[Walters91a] N. Walters, "Requirements Specification for Ada Software Under
DoD- STD2167A," Journal of Systems and Software, Vol. 15, No. 2, May 1991,
pp. 173-183.

[Walters91b] N. Walters. "An Ada Object-Based Analysis and Design Approach,"
ACM SIGADA Ada Letters, Vol. XI, No. 5, July 1991, pp. 62-78.

[Wang88] Y. Wang, "A Distributed Specification Model and Its Prototyping,"
IEEE Transactions on Software Engineering, Vol. 14, No. 8, August 1988, pp.
1090-1097.

[Wasserman86] A. I. Wasserman, P. A. Pircher, D. T. Shewmake, and M. L.
Kersten, "Developing Interactive Information Systems with the User Software
Engineering Methodology," IEEE Transactions on Software Engineering, Vol.
12, No. 2, February 1986, pp. 326-345.

[Wing88] J. M. Wing, "A Study of 12 Specifications of the Library Problem,"
IEEE Software, Vol. 5, No. 4, July 1988, pp. 66-76.

[Yang90] Y. Yang, "Experimental Rapid Prototype of undo Support,"
Information and Software Technology, Vol. 32, No. 9, November 1990, pp. 625-
635.

[Yeh82] R. T. Yeh, "Requirements Analysis - A Management Perspective,"
Proceedings of the 6th International Computer Software & Applications
Conference, Chicago, Illinois, IEEE Computer Society, November 1982, pp.
410-416.

[Yeh84] R. T. Yeh, P. Zave, A. P. Conn, and G. E. Cole, Jr., "Software
Requirements: New Directions and Perspectives," Handbook of Software
Engineering, C. R. Vick and C. V. Ramamoorthy (Eds.), Van Noserand Reinhold
Company, New York, 1984, pp. 519-543.

[Zave91] P. Zave. "An Insider's Evaluation of Paisley," IEEE Transactions on
Software Engineering, Vol. 17, No. 3, March 1991, pp. 212-225.

[Zhou90] W. Zhou, "PM: A System for Prototyping and Monitoring Remote
Procedure Call Programs," ACM SIGSOFT Software Engineering Notes, Vol.
15, No. 1, January 1990, pp. 59-63.

[Zucconi89] L. Zucconi, "Techniques and Experiences Capturing Requirements
for Several Real-Time Applications," ACM SIGSOFT Software Engineering
Notes, Vol. 14, No. 6, October 1989, pp. 51-55.

Appendix B.
LIST OF ACRONYMS

Anna ANNotated Ada
ARTS Automated Requirements Traceability System
BMDATC US Army Ballistic Missile Defense Advanced Technology

Center
C3I Command, Control, Communications, and Intelligence
CAPS Computer-Aided Prototyping System
DARPA Defense Advanced Research Projects Agency
DARTS Design Approach for Real-Time Systems
DEC Digital Equipment Corporation
ENVISAGER ENvironment for the VIsual Specification And Graphical

Execution of Requirements
GSS Graphical Specification System
IWSSD International Workshop on Software Specification and Design
NSF National Science Foundation
PROSPER PROtotypes and SPEcifications with Relative types
PSDL Prototype System Description Language
REVS Requirements Engineering Validation System
RSL Requirements Specification Language
SA Structured Analysis
SBRE Scenario Based Requirements Elicitation
SLAN-4 Software Language-4
SPADES SPecification And DEsign System
SREM Software Requirements Engineering Methodology
TSL Task Sequencing Language
VDM Vienna Development Method

About the Author

Joseph Urban is a professor of computer science at Arizona State
University, responsible for the Software Engineering Research Group. He has
worked at the University of Miami, the University of Southwestern Louisiana,
and part-time at the University of South Carolina while with the US Army Signal
Center. He has published over 50 technical papers. His research areas include
software engineering, computer languages, data engineering, and distributed
computing. His research efforts have been supported primarily through industry.
He has conducted research for Bell-Northem Research, Florida High Technology

and Industry Council, Lockheed, and the National Science Foundation, and served
on the Air Force Studies Board of the National Research Council.

He recently served as a co-conference general chair for the 11th Annual
International Phoenix Conference on Computers and Communications, April
1992, Scottsdale, Arizona and as a program co-chair for the 12th International
Conference on Distributed Computing Systems, June 1992, Yokohama, Japan. He
was a member of the IEEE Computer Society Board of Governors, chair of the
Awards Committee, and a Computer Society representative on the IEEE
Publications Board. He has served as the Computer Society's elected first and
second vice president, responsible for conferences and tutorials, and as treasurer
and Finance Committee chair. He initiated and chaired the IEEE Computer
Society's Technical Committee on Computer Languages and chaired the
Publications Planning Committee. He chaired and lectured in the Chapter
Tutorials and Distinguished Visitors Programs. In addition, he has served as
general chair for the following conferences: IEEE Computer Society 6th (1990)
International Conference on Data Engineering, Los Angeles, California; IEEE
Computer Society / ACM 1988 International Symposium on Databases in Parallel
and Distributed Systems, Austin, Texas; IEEE Computer Society 1986
International Conference on Computer Languages, Miami Beach, Florida; IEEE
Computer Society 1984 Ada Applications and Environments Conference; and
IEEE Computer Society Symposium on Logic Programming, Atlantic City, New
Jersey. He has served on the Editorial Boards of IEEE Transactions on Software
Engineering and IEEE Expert.

He earned a BS degree from the Florida Institute of Technology, an MS
degree from the University of Iowa, and a PhD degree from the University of
Southwestern Louisiana, all in computer science. He has received the Computer
Society's Meritorious and Distinguished Service Awards, a Distinguished
Professor Award while at the University Southwestern Louisiana, and an
Association for Computing Machinery Doctoral Forum Award for one of the
four best Ph.D. theses produced during the 1977-1978 academic year.

